Probing in situ higher order structures of monoclonal antibodies at water-air and water-oil interfaces via high-field nuclear magnetic resonance spectroscopy for viral infections
通过高场核磁共振波谱技术在水-空气和水-油界面原位探测单克隆抗体的高阶结构以检测病毒感染
基本信息
- 批准号:10593377
- 负责人:
- 金额:$ 22.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-17 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdsorptionAffectAirAutoimmune DiseasesBindingBiological Response Modifier TherapyCOVID-19COVID-19 treatmentCardiovascular DiseasesChemicalsCommunicable DiseasesDevelopmentDiffusionFormulationFoundationsFrequenciesFutureGrantHigher Order Chromatin StructureHydrophobicityIn SituIonic StrengthsIsotope LabelingKineticsKnowledgeLaboratoriesLifeLocationMagnetic Resonance ImagingMalignant NeoplasmsMaltoseMeasurementMeasuresMiddle East Respiratory Syndrome CoronavirusModelingMolecularMolecular Probe TechniquesMonoclonal AntibodiesNMR SpectroscopyNatureNeutronsNuclear Magnetic ResonanceOilsOutcome StudyPatientsPharmaceutical PreparationsPolysorbatesPredispositionProteinsRelaxationResearchResolutionRiskRoentgen RaysSARS coronavirusSafetySpectrum AnalysisStructureSurfaceSurface TensionSyringesSystemTechniquesTemperatureTestingTherapeuticTimeTransportationViralVirus DiseasesWaterbioprocesscancer therapyexperienceimmunogenicityimprovedindexinginterfacialmacromoleculemagnetic fieldnovelprogramsquantumrisk mitigationsurfactanttherapeutic protein
项目摘要
PROJECT SUMMARY/ABSTRACT
Monoclonal antibodies (mAbs) represent an important class of biologic therapeutics that can
treat COVID-19, cancer and other infectious diseases. Despite their promising potential, pro-
cessing, storage and/or administration of mAbs into patients is challenging because the presence
of hydrophobic interfaces during processing and administration (air entrapment in the IV bags
or the oil-water interface at the interior of syringes) may promote mAb adsorption to such hy-
drophobic interfaces. If mAbs change their native (folded) higher order structures (HOS) upon
adsorption to these interfaces, their quality, safety and efficacy will be affected, posing immuno-
genicity risks to already susceptible patients. The first step in mitigating these risks is to evaluate
the in situ HOS of mAbs (whether folded or unfolded) at hydrophobic interfaces. Determining the
in situ structure of mAbs at such interfaces has been a major challenge due to limitations of bulk
scale or scattering-based microstructural probing techniques. In this program, we will go beyond
such limits and use a combination of a unique molecular probing technique based on NMR spec-
troscopy and dynamic surface tensiometry to resolve the details of mAbs HOS and adsorption
kinetics at hydrophobic interfaces. In particular, by using high-field spatially and spectrally re-
solved NMR spectroscopy that is uniquely available to use through National High Magnetic Field
Laboratory, we will assess dynamically 1) the in situ HOS of pure mAbs at hydrophobic interfaces,
and 2) nature of their associations with surfactants at interfaces. We will perform tensiometry
along with NMR spectroscopy on pure mAbs, isotopically labeled mAbs and mAbs/surfactant
combinations at hydrophobic interfaces. We will measure a) dynamic surface tension, b) spa-
tially localized chemical shifts in 1D 1H and 2D 1H-13C NMR spectra, c) diffusion coefficients of
the mAbs, and d) T2 relaxation of mAbs in the bulk and at the interface under different conditions
(e.g., various mAbs and surfactant concentrations, solution pH and ionic strengths). By compar-
ing the results of the bulk and interface in terms of metrics (a-d), the team will determine if the
native HOS of mAbs has been altered by adsorption to hydrophobic interfaces or their associa-
tions with surfactants. The outcome of this study will provide the first mechanistic understanding
of mAbs HOS at hydrophobic interfaces. Additionally, the knowledge gained from this research
is essential in developing a framework to mitigate mAbs adsorption to hydrophobic interfaces,
which can be subsequently utilized to improve efficacious mAb deployment for patients.
1
项目概要/摘要
单克隆抗体 (mAb) 是一类重要的生物治疗药物,可以
治疗 COVID-19、癌症和其他传染病。尽管它们潜力巨大,但
对患者进行单克隆抗体的处理、储存和/或给药具有挑战性,因为单克隆抗体的存在
处理和给药过程中疏水界面的影响(静脉输液袋中的空气滞留)
或注射器内部的油水界面)可能会促进单克隆抗体对此类液体的吸附
恐惧界面。如果 mAb 改变其天然(折叠)高阶结构 (HOS)
吸附到这些界面上,其质量、安全性和功效将受到影响,造成免疫-
对已经易感的患者存在基因性风险。减轻这些风险的第一步是评估
mAb(无论是折叠还是未折叠)在疏水界面处的原位 HOS。确定
由于体积的限制,单克隆抗体在此类界面处的原位结构一直是一个重大挑战
基于尺度或散射的微观结构探测技术。在这个计划中,我们将超越
这种限制并结合使用基于核磁共振谱的独特分子探测技术
Troscopy 和动态表面张力测定法解析 mAb HOS 和吸附的细节
疏水界面处的动力学。特别是,通过使用高场空间和光谱重新
解决了核磁共振光谱法,该光谱法只能通过国家高磁场使用
实验室,我们将动态评估 1) 纯 mAb 在疏水界面的原位 HOS,
2)它们与界面表面活性剂缔合的性质。我们将进行张力测量
以及纯 mAb、同位素标记 mAb 和 mAb/表面活性剂的 NMR 光谱
疏水界面处的组合。我们将测量a)动态表面张力,b)spa-
1D 1H 和 2D 1H-13C NMR 谱中的局部化学位移,c) 的扩散系数
mAb,以及 d) 不同条件下 mAb 本体和界面处的 T2 弛豫
(例如,各种 mAb 和表面活性剂浓度、溶液 pH 值和离子强度)。通过比较
根据指标 (a-d) 计算批量和接口的结果,团队将确定是否
mAb 的天然 HOS 已通过吸附到疏水界面或其相关物而改变
与表面活性剂的作用。这项研究的结果将提供第一个机制理解
mAb HOS 在疏水界面上的分布。此外,从这项研究中获得的知识
对于开发减轻单克隆抗体对疏水界面吸附的框架至关重要,
随后可用于改善患者单克隆抗体的有效部署。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hadi Mohammadigoushki其他文献
Hadi Mohammadigoushki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
聚合物纤维膜的声至内源摩擦自充电效应及对空气过滤性能的影响
- 批准号:52373103
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中国典型大城市交通源氨排放特征及空气质量影响的高分辨率解析
- 批准号:42305189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低气压对长空气间隙正先导发展速度的影响规律及其物理机理
- 批准号:52377146
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多尺度时空气候变化背景下人类活动对海南热带低地雨林碳收支影响机制研究
- 批准号:32360386
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
我国东部土壤源氮氧化物排放机理与空气质量影响模拟评估
- 批准号:42371080
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Dialysate regeneration system based on photo-electrochemical urea oxidation and reactive adsorption to enable portable hemodialysis
基于光电化学尿素氧化和反应吸附的透析液再生系统,可实现便携式血液透析
- 批准号:
10761594 - 财政年份:2023
- 资助金额:
$ 22.49万 - 项目类别:
Uncovering Mechanisms of PFAS Adsorption by Granular Activated Carbon to Support PFAS Remediation
揭示颗粒活性炭吸附 PFAS 的机制以支持 PFAS 修复
- 批准号:
10559579 - 财政年份:2022
- 资助金额:
$ 22.49万 - 项目类别:
Role of Monolayer Curvature in Lung Surfactant Morphology and Mechanics
单层曲率在肺表面活性剂形态和力学中的作用
- 批准号:
10415829 - 财政年份:2021
- 资助金额:
$ 22.49万 - 项目类别:
Project 5 Nano-micro Hybrid Fibrous Materials for Containment Removal and Site Remediation
项目5 用于围堵拆除和场地修复的纳米微混合纤维材料
- 批准号:
10337091 - 财政年份:2020
- 资助金额:
$ 22.49万 - 项目类别:
Enhancing Adsorption of Lung Surfactants at the Air-Water Interface Using Methods from Colloid Stability Theory
利用胶体稳定性理论的方法增强肺表面活性剂在空气-水界面的吸附
- 批准号:
9911287 - 财政年份:2020
- 资助金额:
$ 22.49万 - 项目类别: