Role of Monolayer Curvature in Lung Surfactant Morphology and Mechanics
单层曲率在肺表面活性剂形态和力学中的作用
基本信息
- 批准号:10415829
- 负责人:
- 金额:$ 6.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Respiratory Distress SyndromeAdsorptionAdultAffectAirAlbuminsAlveolarAlveolusBinding ProteinsBiological AssayBiomimeticsBreathingChemicalsCholesterolClinicalCommunitiesComplexCrystallizationDevicesDiffusionDilatation - actionElasticityEngineeringEnvironmentEnzymesEvolutionFatty AcidsFibrinogenFluorescenceFluorescence MicroscopyFunctional disorderGasesGeometryGoalsHeterogeneityIn VitroInflammationInflammatory ResponseInjuryLeadLengthLiquid substanceLiteratureLungLung diseasesMeasurementMeasuresMechanicsMethodsMicrobubblesMicroscopicModelingModulusMorphologyOutcomePathogenesisPathologicPenetrationPermeabilityPhasePhospholipase A2PhospholipidsPhysiologicalPlasma ProteinsPlayPneumoniaPositioning AttributePropertyPulmonary SurfactantsPulmonary alveolar structureRadialResistanceRespirationRestRoleSerumSerum ProteinsShockStressSurfaceSurface TensionSystemTestingTheoretical modelTherapeuticTimeTraumaValidationVariantWaterWorkbasecrystallinitydesignexperimental studyfluidityinhibitorinterfaciallung injurymonolayermortalitynovelrecruitsurfactant replacementtheoriestwo-dimensionalvirtual
项目摘要
ABSTRACT: Native lung surfactant (LS) coats the air-water interface of the pulmonary alveoli, reducing its sur-
face tension and stabilizing the lung from collapse. Virtually every important feature of LS – e.g., surface-tension
lowering and respreading ability, fluidity, collapse resistance, and gas permeability – depends on its two-dimen-
sional (2D) domain microstructure. Recent evidence suggests that the morphology of LS crystalline domains (5-
30 μm in size) are highly sensitive to the curvature of the alveolar air-water interface (radii of curvature of 40-
150 μm). Traditional macroscopic methods of physicochemical analysis, such as Langmuir-Wilhelmy surface
tensiometry or pulsating bubble surfactometry, do not examine LS at these microscopic length scales. This omis-
sion leaves the clinical community with, at best, an incomplete picture of how different chemical components of
LS interact within their native, highly curved environment. At worst, the microscopic curvature of the alveoli plays
a nontrivial role in the pathogenesis of pulmonary diseases such as acute respiratory distress syndrome (ARDS).
We hypothesize a mechanism of ARDS progression by which enzyme degradation and blood serum protein
adsorption fundamentally alters the mechanical and morphological properties of curved LS monolayers. In our
putative mechanism, initial injury to the lung causes inflammation and elevated levels of phospholipase A2 (PLA2)
and blood serum proteins (e.g., albumin and fibrinogen) in the alveolar hypophase. PLA2 digests phospholipids
to produce fatty acids, which co-crystallize with LS to form stiff domains. Fibrinogen adsorbs and intercalates the
2D fluid phase of LS, forming a domain-templated elastic network and inhibiting re-adsorption of LS. Well estab-
lished principles of continuum mechanics suggest that highly elastic monolayers with stiff heterogeneities will
locally resist changes in curvature, causing anisotropic dilatation or alveolar collapse during respiration. Such
abnormalities would not only result in decreased alveolar recruitment, but promote further inflammation and
ultimately higher levels of serum protein and PLA2. Since this mechanism depends inherently on the microscopic
curvature of the alveoli, it could not be elucidated through conventional physicochemical assays.
To test our hypothesis, I will measure and model the impact of fatty acid, cholesterol, and fibrinogen on LS
monolayers formed on spherical microbubbles under physiologically relevant conditions. Cholesterol and fatty
acid are present in certain clinical LS replacements, while fatty acid and fibrinogen are implicated in the progres-
sion of ARDS. I will use a novel tensiometer to measure the microstructure and surface tension of LS-coated,
spherical microbubbles as a function of chemical composition and bubble radius. We expect dramatic differences
in the morphology and mechanics of curved LS from those revealed by traditional Langmuir-Wilhelmy measure-
ments of planar LS. Finally, our proposal contains a significant modeling component. I will use continuum theory
to model the static and dynamic morphologies of curved LS monolayers, which will help connect variations in
chemical makeup to the material and geometrical aspects of normal and pathological (i.e., ARDS-afflicted) LS.
摘要:天然肺表面活性剂(LS)覆盖肺泡的空气-水界面,减少其表面活性剂。
LS 的几乎所有重要特征,例如表面张力。
降低和再扩散能力、流动性、抗塌陷性和透气性 – 取决于其二维
最近的证据表明 LS 晶域 (5-) 的形态。
30μm大小)对肺泡空气-水界面的曲率高度敏感(曲率半径为40-
150 μm) 物理化学分析的传统宏观方法,例如 Langmuir-Wilhelmy 表面。
张力测定法或脉动气泡表面测定法,不要在这些微观长度尺度上检查 LS。
临床界充其量只能得到一个不完整的图景,即不同的化学成分是如何发挥作用的。
LS 在其原生的、高度弯曲的环境中相互作用,在最坏的情况下,肺泡的微观弯曲会发挥作用。
在急性呼吸窘迫综合征(ARDS)等肺部疾病的发病机制中发挥着重要作用。
我们探究了 ARDS 进展的机制,通过酶降解和血清蛋白
吸附从根本上改变了弯曲 LS 单层的机械和形态特性。
推测的机制是,肺部的初始损伤会导致炎症和磷脂酶 A2 (PLA2) 水平升高
肺泡缺相中的血清蛋白(例如白蛋白和纤维蛋白原)PLA2 消化磷脂。
产生脂肪酸,与 LS 共结晶形成刚性结构域,吸附并插入纤维蛋白原。
LS 的二维流体相,形成域模板弹性网络并抑制 LS 的再吸附。
连续介质力学的公开原理表明,具有刚性异质性的高弹性单层将
局部抵抗曲率变化,导致呼吸过程中各向异性扩张或肺泡塌陷。
异常不仅会导致肺泡募集减少,还会促进进一步的炎症和
最终血清蛋白和 PLA2 水平较高,因为这种机制最初取决于微观。
肺泡的曲率,无法通过传统的物理化学测定来阐明。
为了验证我们的假设,我将测量并模拟脂肪酸、胆固醇和纤维蛋白原对 LS 的影响
在生理相关条件下在球形微泡上形成单层。
某些临床 LS 替代品中存在脂肪酸,而脂肪酸和纤维蛋白原则与进展有关。
我将使用一种新型张力计来测量 LS 涂层的微观结构和表面张力,
球形微泡作为化学成分和气泡半径的函数,我们预计会有显着差异。
弯曲 LS 的形态和力学与传统 Langmuir-Wilhelmy 测量所揭示的
最后,我们的建议包含一个重要的建模部分,我将使用连续介质理论。
模拟弯曲 LS 单层的静态和动态形态,这将有助于连接
正常和病理(即患有 ARDS 的)LS 的材料和几何方面的化学组成。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Curvature-Mediated Forces on Elastic Inclusions in Fluid Interfaces.
流体界面中弹性夹杂物的曲率介导力。
- DOI:
- 发表时间:2022-01-25
- 期刊:
- 影响因子:0
- 作者:Barakat, Joseph M;Squires, Todd M
- 通讯作者:Squires, Todd M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Michael Barakat其他文献
Joseph Michael Barakat的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
C2烃类吸附分离导向的分子筛材料设计合成及性能研究
- 批准号:22375070
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
选择性分离水产品中全氟辛酸的金属有机框架的设计制备及吸附机制研究
- 批准号:32302234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脓毒症炎症反应调控的自抗凝循环组蛋白吸附剂的构建及机理研究
- 批准号:82300848
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
表面官能团调控吸附态羟基自由基生成机制及其选择性氧化特性研究
- 批准号:22306131
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
电位响应型CO2吸附剂构筑及吸脱附过程控制研究
- 批准号:22308234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Enhancing Adsorption of Lung Surfactants at the Air-Water Interface Using Methods from Colloid Stability Theory
利用胶体稳定性理论的方法增强肺表面活性剂在空气-水界面的吸附
- 批准号:
9911287 - 财政年份:2020
- 资助金额:
$ 6.98万 - 项目类别:
Enhancing Adsorption of Lung Surfactants at the Air-Water Interface Using Methods from Colloid Stability Theory
利用胶体稳定性理论的方法增强肺表面活性剂在空气-水界面的吸附
- 批准号:
10829103 - 财政年份:2020
- 资助金额:
$ 6.98万 - 项目类别:
Enhancing Adsorption of Lung Surfactants at the Air-Water Interface Using Methods from Colloid Stability Theory
利用胶体稳定性理论的方法增强肺表面活性剂在空气-水界面的吸附
- 批准号:
10338180 - 财政年份:2020
- 资助金额:
$ 6.98万 - 项目类别:
Heterogeneous lung surfactant morphologies: effect on alveolar dynamics, and role in promoting acute respiratory distress syndrome
异质肺表面活性剂形态:对肺泡动力学的影响以及促进急性呼吸窘迫综合征的作用
- 批准号:
9406343 - 财政年份:2017
- 资助金额:
$ 6.98万 - 项目类别:
Heterogeneous lung surfactant morphologies: effect on alveolar dynamics, and role in promoting acute respiratory distress syndrome
异质肺表面活性剂形态:对肺泡动力学的影响以及促进急性呼吸窘迫综合征的作用
- 批准号:
9219006 - 财政年份:2017
- 资助金额:
$ 6.98万 - 项目类别: