Data Analysis Core
数据分析核心
基本信息
- 批准号:10254371
- 负责人:
- 金额:$ 27.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAgeAlgorithmsAtlasesAutomationBehaviorBiological AssayCalibrationClassificationComputer softwareConfidence IntervalsCuesDataData AnalysesData SetDevelopmentDimensionsDiseaseEyeFundingGleanGoalsGoldHigh Performance ComputingHistopathologyHumanImageIonsLinkMapsMathematicsMeasurementMeasuresMedical ImagingMethodsMicroscopyMiningModalityModelingMolecularMultilingualismMultimodal ImagingNormal tissue morphologyNormalcyOptical Coherence TomographyOrganOutputPancreasPatientsPhasePlayReportingResolutionSamplingScanningSourceSpecific qualifier valueSystemTechnologyTissue imagingTissuesTrainingTranslatingVariantVendorWorkanalysis pipelinebasecell typecomputerized data processingdata analysis pipelinedata exchangedata miningdata qualitydata visualizationdeep learningfile formatimaging modalityin vivoin vivo imaginginclusion criteriamicroscopic imagingmultimodal datamultimodalitynovel strategiesopen sourceparallelizationreconstructionscaffoldspatial integrationwhole slide imaging
项目摘要
PROJECT SUMMARY – Data Analysis Core. The VU-BIOMIC data analysis core (DAC) is tasked with
automation of the reconstruction and subsequent analysis of the acquired multimodal eye and pancreas tissue
imaging data. This is translated into four specific aims: (i) modality-specific data processing; (ii) data analysis
pipeline development for 2-D and 3-D molecular tissue mapping; (iii) map construction for establishing 3-D
molecular organization and function; and (iv) consortium coordination. In Aim 1, we will develop methods for
preparing acquired measurement data for subsequent spatial integration, analysis, and content mining, and to
remove any non-biological variation from the measurements prior to integration. In Aim 2, the DAC provides
rapid cues for data quality assessment and ongoing multimodal analysis as new data is integrated into the
atlases. Pre-analytically, we will develop data-derived sample inclusion criteria based on LC-MS/MS
measurements, combined with gold standard histopathology, to capture what is “normal” tissue. To enable data
mining of the massive 3-D multimodal spatially resolved datasets, accurate registration of multiple 2-D datasets
into 3-D volumes will be essential. We will build a high-resolution mono-modal 3-D scaffold, using pre-
measurement autofluorescence microscopy taken from every single tissue section. Furthermore, the 3-D data
and analysis outputs, reconstructed from serial sections, will be spatially linked (by means of 3-D-to-3-D
registration models) to the organ-specific in vivo and ex vivo 3-D scans to relate the acquired spectral data to
more commonly encountered medical imaging modalities. Data-driven image fusion will enable the empirical
discovery of potential correlative, anti-correlative, multivariate linear, and nonlinear relationships between
observations in the different modalities, and also provide a framework for estimating to higher spatial resolutions
as well as for out-of-sample prediction from one modality to another. The DAC will perform temporally resolved
analysis of the data to find how molecular content changes with patient age. In Aim 3, the map construction
phase, we will bring the third dimension to the varied data types that are measured and annotated. Data-driven
image fusion will be used to advance the 3-D maps beyond what can be gleaned from one technology alone,
including the application of IMS-AF-fusion-driven out-of-sample prediction. This will enable prediction of IMS
observations at cutting depths where no IMS is measured. This will effectively provide predictive up-sampling of
the 3-D tissue maps along the z-axis, building finer resolution 3-D volumes than would be possible with IMS
alone. In Aim 4, we will develop specifications for the open file formats used in this work, multilingual parsers to
ease access, and a URL-based Restful API to make (authorized) data exchange easy and accessible. We will
work with the consortium to build common coordinate atlases based on in vivo images and continue the work of
the currently funded project in specifying and developing easily disseminated file formats.
项目摘要 – 数据分析核心 VU-BIOMIC 数据分析核心 (DAC) 的任务是:
对所获得的多模式眼睛和胰腺组织进行重建和后续分析的自动化
这转化为四个具体目标:(i) 特定模式的数据处理;(ii) 数据分析;
(iii) 建立 3-D 的地图构建
分子组织和功能;以及 (iv) 联合体协调 在目标 1 中,我们将开发方法。
为后续的空间整合、分析和内容挖掘准备获取的测量数据,并
在目标 2 中,DAC 提供了在积分之前消除测量结果中的任何非生物变异的功能。
随着新数据集成到数据中,数据质量评估和持续多模式分析的快速提示
在分析前,我们将制定基于 LC-MS/MS 的数据衍生样本纳入标准。
测量与金标准组织病理学相结合,捕获“正常”组织以获取数据。
挖掘海量 3D 多模态空间分辨数据集,准确配准多个 2D 数据集
我们将使用预构建高分辨率单模态 3D 支架。
测量自体荧光显微镜从每个组织切片此外,3-D 数据。
从连续部分重建的分析输出将在空间上链接(通过 3-D 到 3-D
配准模型)到器官特异性体内和离体 3D 扫描,将采集到的光谱数据与
更常见的医学成像模式将实现经验驱动的图像融合。
发现之间潜在的相关、反相关、多元线性和非线性关系
不同模式的观测,并提供估计更高空间分辨率的框架
以及从一种模态到另一种模态的样本外预测,DAC 将执行时间解析。
分析数据以了解分子含量如何随患者年龄变化。在目标 3 中,构建图谱。
阶段,我们将把第三维度引入数据驱动的各种数据类型中。
图像融合将用于改进 3D 地图,超出仅从一项技术所能收集到的范围,
包括 IMS-AF 融合驱动的样本外预测的应用,这将使 IMS 的预测成为可能。
在没有测量 IMS 的切割深度进行观察,这将有效地提供预测的上采样。
沿 z 轴绘制 3D 组织图,构建比 IMS 更高分辨率的 3D 体积
仅在目标 4 中,我们将为这项工作中使用的开放文件格式、多语言解析器制定规范。
轻松访问,以及基于 URL 的 Restful API,使(授权)数据交换变得轻松且可访问。
与该联盟合作,建立基于体内图像的共同坐标图集,并继续开展以下工作
目前资助的项目是指定和开发易于传播的文件格式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey M Spraggins其他文献
Jeffrey M Spraggins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey M Spraggins', 18)}}的其他基金
Multimodal Imaging Mass Spectrometry and Spatial Omics for the Human Kidney
人类肾脏的多模态成像质谱和空间组学
- 批准号:
10515051 - 财政年份:2022
- 资助金额:
$ 27.98万 - 项目类别:
Vanderbilt University Biomolecular Multimodal Imaging Center for 3-Dimensional Mapping of the Human Kidney
范德比尔特大学生物分子多模态成像中心进行人体肾脏 3 维绘图
- 批准号:
10530867 - 财政年份:2022
- 资助金额:
$ 27.98万 - 项目类别:
Vanderbilt University Biomolecular Multimodal Imaging Center for 3-Dimensional Mapping of the Human Kidney
范德比尔特大学生物分子多模态成像中心进行人体肾脏 3 维绘图
- 批准号:
10701832 - 财政年份:2022
- 资助金额:
$ 27.98万 - 项目类别:
Multimodal Imaging Mass Spectrometry and Spatial Omics for the Human Kidney
人类肾脏的多模态成像质谱和空间组学
- 批准号:
10701835 - 财政年份:2022
- 资助金额:
$ 27.98万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 27.98万 - 项目类别:
Console Upgrade for 4.7T PET-MRI Preclinical Scanner
4.7T PET-MRI 临床前扫描仪控制台升级
- 批准号:
10630520 - 财政年份:2023
- 资助金额:
$ 27.98万 - 项目类别:
CRISPR-Cas Editing as a Genetic Cure for Autosomal Dominant Polycystic Kidney Disease
CRISPR-Cas 编辑作为常染色体显性多囊肾病的基因治疗
- 批准号:
10822502 - 财政年份:2023
- 资助金额:
$ 27.98万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 27.98万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 27.98万 - 项目类别: