Synthetic hydrogels for biomanufacturing of iPSC-derived neural cells for precision medicine
用于精准医学 iPSC 衍生神经细胞生物制造的合成水凝胶
基本信息
- 批准号:10237392
- 负责人:
- 金额:$ 67.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AnimalsBiochemicalBiological AssayBiomanufacturingBioreactorsCell AdhesionCell Differentiation processCell modelCellsChemicalsCoupledCultured CellsDataDevelopmentDiseaseDisease modelElasticityEnvironmentEnvironmental ExposureEnvironmental Risk FactorEtiologyFeasibility StudiesGenerationsGenetic TranscriptionGoalsGrowth FactorHumanHydration statusHydrogelsLuciferasesMajor Depressive DisorderMeasurementMechanicsMethodologyMethodsMicroelectrodesMitoticModelingMorphologyNeurodevelopmental DisorderNeuronsOutputPatientsPharmaceutical PreparationsPhasePhenotypePolystyrenesPrecision therapeuticsProtocols documentationQuality ControlReporterReproducibilitySamplingSurfaceSystemTechniquesTechnologyTherapeuticThickThinnessTimeTissuesToxic Environmental SubstancesToxinValidationWorkbasecell typecellular imagingcommercializationcomparativecostdesignexperimental studyimprovedinduced pluripotent stem cellinnovationmechanical propertiesnanonerve stem cellnovelphase 1 studyphysical propertypolymerizationprecision medicinepublic health relevancerelating to nervous systemresponsescreeningself assemblystemtime usetissue culturetooltreatment strategy
项目摘要
Human neural cells manufactured using patient-derived induced pluripotent stem cells (iPSCs) hold great
promise for modeling neurodevelopmental disorders, discovering new precision therapies, and screening for
potential risks from environmental toxins 1-4. There have been significant advances in the last decade in protocols
and commercial media systems developed for differentiation into specific neural cell types 5-8. However, there
remain significant technical challenges to overcome in their generation, manufacturing and assay workflows.
iPSCs are typically differentiated on animal-derived substrates that introduce intrinsic variability and lack control
over mechanical stiffness and biochemical composition. This often results in low yields and high variability, which
may be more pronounced when generating cellular models of diseases. There is a critical need to develop
commercial tools that promote differentiation of iPSCs into mature neural cells in a controlled, efficient, and
reproducible fashion and that eliminate animal derived products. The resulting cells, associated cell-based
assays and cellular therapeutics will have a transformative impact on neural disease modeling, drug and
therapeutic discovery and toxin screening.
Our Phase I study identified chemically defined and robust synthetic hydrogels for efficient differentiation
of iPSC-derived neural progenitor cells (NPCs) into cortical neurons and subsequent maturation to post-mitotic,
functionally mature neurons. The highly innovative aspects of this work are that the substrates are employed as
thin hydrogel coatings using our proprietary surface-localized polymerization methods which provides several
technical and commercialization advantages. In order to bring these novel substrates to market we propose the
following specific aims for our Phase II proposal: Specific Aim 1 will further validate the work that demonstrated
our optimized synthetic thin hydrogel coatings support neural differentiation and maturation. Including further
functional characterization of cells cultured on the substrates by employing microelectrode array analysis and
differential transcriptional analysis to compare cells cultured on the substrate. We will characterize of the physical
and mechanical properties of the optimized thin hydrogels and develop methods for coating plates using
automated systems. Specific Aim 2 will apply the substrates in a Proof-of-Concept demonstration utilizing the
substrates to assess cortical neurons from Major Depressive Disorder patient-derived samples compared with
controls. Specific Aim 3 will expand the technology platform by optimizing coating techniques on microcarriers
suitable for bioreactor scaling, which is a critical step to demonstrate these substrates are applicable to
biomanufacturing applications. This work is significant, as there is a critical need for better tools to optimize yields
and reduce variability in the differentiation of iPSCs to defined neural subtypes, support their long-term culture,
reduce the time needed to reach functional maturity and eliminate animal-derived products in the workflow.
使用患者来源的诱导多能干细胞 (iPSC) 制造的人类神经细胞具有良好的前景
有望模拟神经发育障碍、发现新的精准疗法以及筛查
环境毒素的潜在风险1-4。过去十年协议取得了重大进展
以及为分化成特定神经细胞类型 5-8 而开发的商业培养基系统。然而,有
在其生成、制造和分析工作流程中仍然存在需要克服的重大技术挑战。
iPSC 通常在动物源性基质上分化,从而引入内在变异性且缺乏控制
超过机械刚度和生化成分。这通常会导致低产量和高变异性,
当生成疾病的细胞模型时可能更加明显。迫切需要开发
促进 iPSC 以受控、高效和稳定的方式分化为成熟神经细胞的商业工具
可复制的时尚并消除动物衍生产品。产生的细胞,相关的基于细胞的
检测和细胞疗法将对神经疾病模型、药物和治疗产生变革性影响
治疗发现和毒素筛选。
我们的第一阶段研究确定了化学成分明确且坚固的合成水凝胶,可实现有效分化
将 iPSC 衍生的神经祖细胞 (NPC) 转化为皮质神经元,并随后成熟至有丝分裂后,
功能成熟的神经元。这项工作的高度创新之处在于基材被用作
使用我们专有的表面局部聚合方法形成薄水凝胶涂层,可提供多种
技术和商业化优势。为了将这些新颖的基材推向市场,我们建议
我们的第二阶段提案的具体目标如下: 具体目标 1 将进一步验证所展示的工作
我们优化的合成薄水凝胶涂层支持神经分化和成熟。进一步包括
通过微电极阵列分析对基质上培养的细胞进行功能表征
差异转录分析以比较在基质上培养的细胞。我们将表征物理
和优化的薄水凝胶的机械性能,并开发使用涂层板的方法
自动化系统。具体目标 2 将利用以下技术在概念验证演示中应用基板
与来自重度抑郁症患者的样本相比,评估皮层神经元的底物
控制。 Specific Aim 3 将通过优化微载体上的涂层技术来扩展技术平台
适用于生物反应器规模化,这是证明这些底物适用于的关键步骤
生物制造应用。这项工作意义重大,因为迫切需要更好的工具来优化产量
并减少 iPSC 分化为定义的神经亚型的变异性,支持其长期培养,
减少达到功能成熟所需的时间并消除工作流程中的动物衍生产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Connie S Lebakken其他文献
Human induced pluripotent stem cell-derived planar neural organoids assembled on synthetic hydrogels
在合成水凝胶上组装的人诱导多能干细胞衍生的平面神经类器官
- DOI:
10.1177/20417314241230633 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:8.2
- 作者:
Joydeb Majumder;Elizabeth E Torr;Elizabeth A Aisenbrey;Connie S Lebakken;Peter F Favreau;William D Richards;Yanhong Yin;Qiang Chang;William L Murphy - 通讯作者:
William L Murphy
Connie S Lebakken的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Connie S Lebakken', 18)}}的其他基金
Neural organoid models of the immunological microenvironment of glioblastoma for drug discovery applications
用于药物发现应用的胶质母细胞瘤免疫微环境的神经类器官模型
- 批准号:
10761235 - 财政年份:2023
- 资助金额:
$ 67.86万 - 项目类别:
Human Neural Organoid Modeling of Alzheimer's Disease Neuroinflammation for Drug Discovery
阿尔茨海默病神经炎症的人类神经类器官模型用于药物发现
- 批准号:
10758939 - 财政年份:2023
- 资助金额:
$ 67.86万 - 项目类别:
Hydrogel-enabled self-assembled human brain organoids for neurotoxicity applications
用于神经毒性应用的水凝胶自组装人脑类器官
- 批准号:
10374175 - 财政年份:2019
- 资助金额:
$ 67.86万 - 项目类别:
Hydrogel-enabled self-assembled human brain organoids for neurotoxicity applications
用于神经毒性应用的水凝胶自组装人脑类器官
- 批准号:
10259033 - 财政年份:2019
- 资助金额:
$ 67.86万 - 项目类别:
Synthetic hydrogels for biomanufacturing of iPSC-derived neural cells for precision medicine
用于精准医学 iPSC 衍生神经细胞生物制造的合成水凝胶
- 批准号:
10081193 - 财政年份:2018
- 资助金额:
$ 67.86万 - 项目类别:
相似国自然基金
免疫层析生化反应过程建模、优化控制与分析及在海洋生物毒素定量检测中的应用
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
基于集成光流控环形谐振腔的多功能生化检测技术的研究
- 批准号:61905224
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于微生物电解电池的BOD传感器基础研究
- 批准号:21806126
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于准三维铝纳米有序阵列的高灵敏LSPR生化传感器的构建与性能研究
- 批准号:21775168
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
用于C-反应蛋白检测的电化学生物传感器研究
- 批准号:61661014
- 批准年份:2016
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Biologically-engineered Transcatheter Vein Valve: Design Optimization and Preclinical Testing
生物工程经导管静脉瓣膜:设计优化和临床前测试
- 批准号:
10594865 - 财政年份:2023
- 资助金额:
$ 67.86万 - 项目类别:
Structural and Functional Analysis of Nucleocytoplasmic Protein O-Glycosyltransferases in Plants
植物核胞质蛋白 O-糖基转移酶的结构和功能分析
- 批准号:
10648930 - 财政年份:2023
- 资助金额:
$ 67.86万 - 项目类别:
Elucidating the Host Metabolic Response to Consumption of Kombucha-associated Microorganisms
阐明宿主对康普茶相关微生物消耗的代谢反应
- 批准号:
10678132 - 财政年份:2023
- 资助金额:
$ 67.86万 - 项目类别:
Chemical Biology Approaches to Studying Collagen IV Stability
研究胶原蛋白 IV 稳定性的化学生物学方法
- 批准号:
10723042 - 财政年份:2023
- 资助金额:
$ 67.86万 - 项目类别:
Generation and characterization of a Cre-Lox regulated transgenic zebrafish model of SBMA
Cre-Lox 调节的 SBMA 转基因斑马鱼模型的生成和表征
- 批准号:
10784254 - 财政年份:2023
- 资助金额:
$ 67.86万 - 项目类别: