Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
基本信息
- 批准号:9093872
- 负责人:
- 金额:$ 36.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesivesAdoptedAfferent NeuronsBindingBiological AssayCell AdhesionCell Adhesion MoleculesCellsCharacteristicsComplexDevelopmentDiseaseElectrophysiology (science)EmbryoEquilibriumFoundationsFunctional disorderGenesGeneticGenetic RecombinationGlutamatesGoalsHealthIndividualInjection of therapeutic agentInterneuron functionInterneuronsIntrinsic factorKnowledgeLabelMediatingMedicalMissionMolecularMolecular GeneticsMolecular ProfilingMotor NeuronsMusNeuraxisNeurodegenerative DisordersNeurologicNeuronsNeurotransmittersOutputPatternProcessProprioceptorPublic HealthReporterResearchRoleSchizophreniaScienceSensorySignal TransductionSpecific qualifier valueSpecificitySpinalSpinal CordSpinal cord injurySynapsesTamoxifenTestingTimeWorkbasecholinergiccontactinhuman diseasein vivoinnovationknowledge basemolecular markernervous system disorderneural information processingneuronal circuitryneuropsychiatrynovelpresynapticpromoterprotein expressionreceptorregenerative therapyresearch studysynaptogenesistime usetranscription factor
项目摘要
DESCRIPTION (provided by applicant): The formation of specific synaptic connections by local interneurons is critical for the processing of neuronal information. However, little is known
about the factors that regulate interneuronal connectivity in the central nervous system. Our long-term goal is to understand the genetic mechanisms that control interneuronal circuit formation. The objective of the proposed experiments is to describe how a cell-intrinsic factor and its downstream effectors determine GABAergic interneuronal identity and circuit connectivity. We focus our analysis on an identified and molecularly characterized subclass of spinal GABAergic inhibitory interneurons that form direct axo-axonic contacts on sensory afferent terminals, thereby inhibiting them presynaptically. We will test the hypothesis that the transcription factor Ptf1a controls synaptic targeting and differentiation of a class of spinal GABAergic interneurons, and that a transcriptional target of Ptf1a, NrCAM, contributes with Contactin-5 and Caspr4 to an adhesive signaling complex that directs specific synaptic connectivity. We test our hypothesis with the following three aims: #1) Characterize distinct GABAergic interneuron subtypes based on the timing of Ptf1a expression in neuronal precursors; #2) Define the role of Ptf1a in directing connectivity of GABApre interneurons; and #3) Assess the role of the Ptf1a effector gene NrCAM and the potential NrCAM receptor complex Contactin-5/CASPR4 in specifying GABApre target selection. In the first aim, we use timed tamoxifen injections to label and characterize single Ptf1a-expressing interneurons. In the second aim, we use mouse genetics to assess whether Ptf1a is necessary and sufficient for the targeting and differentiation of GABApre synapses. In the third aim, we use mouse genetics to perturb cell adhesion signaling and we analyze the consequences of this both micro-anatomically and functionally, via a novel electrophysiological assay of presynaptic inhibition. Taken together, the proposed experiments will determine which aspects of spinal GABAergic interneuronal identity and connectivity are directed by Ptf1a, and will suggest a downstream molecular mechanism by which specific synaptic connectivity is conferred. Our proposed research is innovative both technically and conceptually. Technically, we will combine new mouse lines with novel in vivo molecular genetics and electrophysiological analyses to manipulate and functionally characterize spinal GABAergic circuits in an otherwise intact network in vivo. Conceptually, we will explore the necessity and sufficiency of an intrinsic transcription factor signal (Ptf1a) for determining specific GABAergic identity and connectivity. Our proposed work is significant in that we will demonstrate - for the first time - a transcriptionl mechanism mediating synaptic specificity of inhibitory central circuits in vivo, and a novel role for cell adhesion-based signaling in directing specific interneuronal connectivity. Our analysis will contribute to a basic scientific understanding of neuronal circuit formation and will provide foundation for regenerative therapies aimed at rebuilding GABAergic circuitry disrupted by human disease.
描述(由申请人提供):局部中间神经元的特定突触连接形成对于处理神经元信息至关重要。但是,鲜为人知
关于调节中枢神经系统中神经元连通性的因素。我们的长期目标是了解控制神经元电路形成的遗传机制。提出的实验的目的是描述细胞中性因子及其下游效应子如何确定GABA能中的神经元身份和电路连接。我们将分析重点放在脊柱GABA能抑制性中间神经元的鉴定且分子表征的亚类上,该抑制性中间神经元在感觉传统末端形成直接的Axo轴突接触,从而在突触前抑制它们。我们将检验以下假设:转录因子PTF1A控制一类脊柱GABA能中间神经元的突触靶向和分化,并且PTF1A,NRCAM的转录靶标可对Contactin-5和CaspR4的粘附信号传导络合物有助于指导特定突触连接性。我们以以下三个目的检验我们的假设:#1)根据神经元前体中PTF1A表达的时机来表征不同的GABA能中间的亚型; #2)定义PTF1A在指导Gabapre Internerons的连通性中的作用;和#3)评估PTF1A效应子基因NRCAM和潜在的NRCAM受体复合物Contectin-5/CaspR4在指定Gabapre靶标的选择中的作用。在第一个目的中,我们使用定时的他莫昔芬注射来标记和表征单个PTF1A表达的中间神经元。在第二个目标中,我们使用小鼠遗传学来评估PTF1A是否需要且足以实现Gabapre突触的靶向和分化。在第三个目的中,我们使用小鼠遗传学来扰动细胞粘附信号传导,并通过突触前抑制作用的新型电生理测定法对微观和功能上的后果进行了分析。综上所述,提出的实验将确定PTF1A指导的脊柱GABA能的脊髓间神经元身份和连通性的哪些方面,并提出一种下游分子机制,通过赋予特定的突触连通性。我们提出的研究在技术上和概念上都是创新的。从技术上讲,我们将将新的小鼠系与新型的体内分子遗传学和电生理分析相结合,以操纵和功能表征体内原本完整的网络中的脊柱GABA能回路。从概念上讲,我们将探讨固有转录因子信号(PTF1A)的必要性和充分性,以确定特定的GABA能认同和连通性。我们提出的工作很重要,因为我们将首次证明一种转录机制,介导了体内抑制性中心回路的突触特异性,以及基于细胞粘附信号传导在指导特定特定神经元连接性中的新作用。我们的分析将有助于对神经元电路形成的基本科学理解,并将为旨在重建受人类疾病破坏的GABA能回路的再生疗法提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Anna Kaltschmidt其他文献
Julia Anna Kaltschmidt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Anna Kaltschmidt', 18)}}的其他基金
Development and Patterning of the Enteric Nervous System
肠神经系统的发育和模式
- 批准号:
10741619 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
9521466 - 财政年份:2017
- 资助金额:
$ 36.85万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
8692038 - 财政年份:2013
- 资助金额:
$ 36.85万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
8868192 - 财政年份:2013
- 资助金额:
$ 36.85万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
10413154 - 财政年份:2013
- 资助金额:
$ 36.85万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
8562065 - 财政年份:2013
- 资助金额:
$ 36.85万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
10159975 - 财政年份:2013
- 资助金额:
$ 36.85万 - 项目类别:
Molecular Mechanisms Regulating Inhibitory Circuitry in the Spinal Cord
调节脊髓抑制电路的分子机制
- 批准号:
10624944 - 财政年份:2013
- 资助金额:
$ 36.85万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The interactions between myenteric macrophages and enteric neurons shape development and spread of enteric synucleinopathy
肌间巨噬细胞和肠神经元之间的相互作用影响肠突触核蛋白病的发展和扩散
- 批准号:
10723844 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 36.85万 - 项目类别:
A Cell-specific modified CRISPR/Cas9 system for conditional gene disruption in Aedes aegypti
用于埃及伊蚊条件性基因破坏的细胞特异性修饰 CRISPR/Cas9 系统
- 批准号:
10608005 - 财政年份:2022
- 资助金额:
$ 36.85万 - 项目类别:
Driving the Progeny of Olfactory HBC Stem Cells toward Neuronal Differentiation
驱动嗅觉 HBC 干细胞后代向神经元分化
- 批准号:
10527167 - 财政年份:2022
- 资助金额:
$ 36.85万 - 项目类别: