Deconstructing the lipoxygenase-hepoxilin pathway in skin barrier formation
解构皮肤屏障形成中的脂氧合酶-海泊西林途径
基本信息
- 批准号:10576839
- 负责人:
- 金额:$ 40.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAmino AcidsAppearanceAtopic DermatitisBindingBinding ProteinsBiochemicalBypassCellsCeramidesChemicalsCongenital ichthyosisCouplingDataDehydrationDermatitisDiseaseEnzymesEpidermisEssential Fatty AcidsEsterificationFamilyFamily suidaeFunctional disorderGene DeletionGenesGoalsHumanHydroxyl RadicalHydroxylationIchthyosesImpairmentInheritedInvadedKineticsKnock-outLOX geneLinkLinoleic AcidsLipidsLipoxygenaseMetabolismModelingModificationMusNeonatalOrphanOxidoreductasePathogenesisPathway interactionsPeptidesPermeabilityPhysiologyPlayProcessProductionPropertyProteinsPsoriasisRationalizationReactionRecombinantsRoleSeriesSkinSphingosineStructureSyndromeSystemTherapeuticTissuesToxinWaterWorkadductautosomeinsightkeratinocytekeratinocyte differentiationknockout genelinoleatesmicroorganismoxidationoxidized lipidrational designskin barrierskin disordersocialthree dimensional cell culture
项目摘要
Deconstructing the Lipoxygenase-Hepoxilin Pathway in Skin Barrier Formation
SUMMARY
A deficiency in any one of the genes involved in forming the mammalian skin permeability barrier has
devastating consequences, being neonatal lethal in mice and in humans leading to congenital ichthyosis (scaly
skin), a socially challenging condition for afflicted families. Skin barrier malfunction is also implicated in the
common skin diseases of atopic dermatitis and psoriasis. Two genes critical to barrier formation are the
lipoxygenases 12R-LOX and eLOX3, which act in series to oxygenate the essential fatty acid linoleate
esterified to the omega-hydroxyl of the unique epidermal acylceramide Cer-EOS [E = esterified, O = omega-
hydroxy]. The oxidized product is a linoleate-Hepoxilin (“hep” indicating a hydroxy-epoxy structure). For
reasons heretofore unresolved, inactivation of the LOX genes (or other ichthyosis genes earlier in the ceramide
metabolism pathway) disrupts the covalent attachment of ceramide to the proteinaceous corneocyte envelope,
normally forming a key structural feature of the barrier, the “corneocyte lipid envelope”, CLE. We propose to
study a new hypothesis that identifies the link between the LOX pathway oxidations of Cer-EOS and the
covalent coupling of ceramides, which is the culmination of multiple steps in barrier formation. Of special
importance is the activity of a recently identified orphan ichthyosis gene SDR9C7, that our preliminary data
identifies as a NAD-dependent dehydrogenase that oxidizes the Cer-EOS-Hepoxilin to a Cer-EOS-keto-
Hepoxilin. This keto-Hepoxilin sub-structure (9,10-epoxy-11E-13-keto) is known from chemical precedent and
biochemical studies to spontaneously and specifically bind covalently to amino acid residues of protein, and as
a consequence also achieve covalent coupling of the EOS-ceramide. This hypothesis thus rationalizes the
need for LOX-catalyzed oxidations with the ultimate goal of binding ceramide to protein and forming the CLE.
In Specific Aim 1 we will (i) define the effects of sdr9c7 gene knockout on the lipoxygenase products and
ceramides in mouse skin, (ii) extend the analyses to human and pig skin for the equivalent SDR9C7-catalyzed
transformations, (iii) determine the reactions of recombinant SDR9C7 with LOX pathway products. In Specific
Aim 2 we will (i) prepare authentic standards of amino acid adducts of keto-Hepoxilin with amino acids and
model peptides, (ii) examine epidermal proteins qualitatively and quantitatively for covalently bound ceramides
and their mode of binding to amino acid residues in mouse epidermis and also (iii) in human and pig skin,
ultimately with identification of the adducted proteins by LC-MS analysis of recovered peptides. In Specific Aim
3 we will use differentiated keratinocytes in culture to manipulate and dissect these pathways to help
characterize the chemical mechanisms of ceramide binding to protein and the role of the LOX/SDR9C7
pathway. The results of this study will unravel the mechanisms underlying an important facet of epidermal
water barrier construction. Understanding the physiology allows for the rational design of therapeutics, and it is
to rationalize the role of multiple key enzymes of the epidermal water barrier that this project's ultimate goal.
解构皮肤屏障形成中的脂氧合酶-Hepoxilin 通路
概括
参与形成哺乳动物皮肤渗透性屏障的任何一种基因的缺陷
毁灭性的后果,对小鼠和人类的新生儿来说是致命的,导致先天性鱼鳞病(鳞状鱼鳞病)
对于受影响的家庭来说,这是一种具有社会挑战性的疾病,皮肤屏障功能障碍也与此有关。
特应性皮炎和牛皮癣等常见皮肤病对屏障形成至关重要的两个基因。
脂氧合酶 12R-LOX 和 eLOX3,串联作用以氧化必需脂肪酸亚油酸酯
与独特的表皮酰基神经酰胺 Cer-EOS 的 omega-羟基酯化 [E = 酯化,O = omega-
氧化产物是亚油酸酯-Hepoxilin(“hep”表示羟基-环氧结构)。
迄今为止尚未解决的原因,LOX基因(或神经酰胺早期的其他鱼鳞病基因)的失活
代谢途径)破坏神经酰胺与蛋白质角质细胞包膜的共价附着,
通常形成屏障包膜的关键结构特征,“角质细胞脂质”,CLE。
研究一个新的假设,该假设确定了 Cer-EOS 的 LOX 途径氧化与
神经酰胺的共价偶联,这是特殊屏障形成过程中多个步骤的结果。
重要的是最近发现的孤儿鱼鳞病基因 SDR9C7 的活性,我们的初步数据
被鉴定为 NAD 依赖性脱氢酶,可将 Cer-EOS-Hepoxilin 氧化为 Cer-EOS-keto-
这种酮-Hepoxilin亚结构(9,10-环氧-11E-13-酮)是从化学先例中已知的。
自发地、特异性地与蛋白质的氨基酸残基共价结合的生化研究,以及
结果也实现了 EOS-神经酰胺的共价偶联,从而使该假设合理化。
需要 LOX 催化的氧化反应,最终目标是将神经酰胺与蛋白质结合并形成 CLE。
在具体目标 1 中,我们将 (i) 定义 sdr9c7 基因敲除对脂氧合酶产物的影响,以及
小鼠皮肤中的神经酰胺,(ii) 将分析扩展到人类和猪皮肤,以获得等效的 SDR9C7 催化
转化,(iii)确定重组SDR9C7与LOX途径产物的反应。
目标 2 我们将 (i) 制备酮-Hepoxilin 与氨基酸的氨基酸加合物的真实标准品,以及
模型肽,(ii) 定性和定量检查表皮蛋白中的共价结合神经酰胺
以及它们与小鼠表皮以及(iii)人和猪皮肤中的氨基酸残基的结合模式,
最终通过 LC-MS 分析回收的肽来鉴定加合蛋白。
3 我们将在培养物中使用分化的角质形成细胞来操纵和剖析这些途径,以帮助
表征神经酰胺与蛋白质结合的化学机制以及 LOX/SDR9C7 的作用
这项研究的结果将揭示表皮一个重要方面的机制。
了解水屏障结构有助于合理设计治疗方法,而且它是
理顺表皮水屏障多种关键酶的作用是该项目的最终目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALAN R. BRASH其他文献
ALAN R. BRASH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALAN R. BRASH', 18)}}的其他基金
Deconstructing the lipoxygenase-hepoxilin pathway in skin barrier formation
解构皮肤屏障形成中的脂氧合酶-海泊西林途径
- 批准号:
10355508 - 财政年份:2020
- 资助金额:
$ 40.29万 - 项目类别:
Deconstructing the lipoxygenase-hepoxilin pathway in skin barrier formation
解构皮肤屏障形成中的脂氧合酶-海泊西林途径
- 批准号:
10582061 - 财政年份:2020
- 资助金额:
$ 40.29万 - 项目类别:
Receptor-mediated signaling pathways leading to phosphatidic acid generation
导致磷脂酸生成的受体介导的信号通路
- 批准号:
9218361 - 财政年份:2017
- 资助金额:
$ 40.29万 - 项目类别:
相似国自然基金
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氨基酸多态性对代谢生成亚硝(酰)胺前体物的影响机理研究
- 批准号:22376114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MiCMV NIa-Pro 111位氨基酸对致病性的影响及作用机制
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling
蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用
- 批准号:
10660507 - 财政年份:2023
- 资助金额:
$ 40.29万 - 项目类别:
Processivity and Catalytic Mechanism of Aldosterone Synthase
醛固酮合酶的持续合成能力和催化机制
- 批准号:
10600520 - 财政年份:2023
- 资助金额:
$ 40.29万 - 项目类别:
Glomerular and Tubular Function in the Recovering Kidney
肾脏恢复中的肾小球和肾小管功能
- 批准号:
10587898 - 财政年份:2023
- 资助金额:
$ 40.29万 - 项目类别:
Discovery of early immunologic biomarkers for risk of PTLDS through machine learning-assisted broad temporal profiling of humoral immune response
通过机器学习辅助的体液免疫反应的广泛时间分析发现 PTLDS 风险的早期免疫生物标志物
- 批准号:
10738144 - 财政年份:2023
- 资助金额:
$ 40.29万 - 项目类别:
The roles of fosfomycin resistant subpopulations of Escherichia coli in urinary tract infection.
大肠杆菌磷霉素耐药亚群在尿路感染中的作用。
- 批准号:
10603417 - 财政年份:2023
- 资助金额:
$ 40.29万 - 项目类别: