Understanding Geometric and Electronic Structure Contributions to Ground and Excited State Cu- and Ni-Catalyzed Cross-Coupling Reactions
了解几何和电子结构对基态和激发态铜和镍催化交叉偶联反应的贡献
基本信息
- 批准号:10589159
- 负责人:
- 金额:$ 41.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedCalibrationCatalysisComputing MethodologiesCouplingDevelopmentDisparateElectron TransportElectronicsEngineeringEvolutionIndustrializationIndustryLigandsLightMetalsMethodological StudiesMethodsMolecularNatureOpticsPathway interactionsPharmaceutical ChemistryPharmacologic SubstancePhotochemistryPlanet EarthPotential EnergyProcessPropertyReactionRelaxationResearchRestRoentgen RaysSpectrum AnalysisStructureSurfaceTemperatureTherapeuticTimeTransition ElementsTranslationsWorkabsorptioncatalystcircular magnetic dichroismdrug candidatedrug discoverydrug synthesiselectronic structureemission spectroscopyfrontiergeometric structureknowledge basemagnetic fieldmetal complexmolecular orbitalnovel therapeuticsphotonicssuccess
项目摘要
Project Summary
Developing sustainable approaches to the synthesis of molecular therapeutics will be important for the
continued evolution and success of medicinal and pharmaceutical chemistries. A major component of
drug synthesis involves transition metal catalyzed C–X (X = C, N, O, etc.) bond formation reactions.
While precious metals such as Pd are used for these reactions, first row transition metals are becoming
more widely adopted, as they are abundant and open new mechanistic pathways involving one- and
multi-electron transfer reactivity, which can potentially work in concert with ligand noninnocence and
multireference electronic structure to form transformative structure/function relationships. The merger
of thermal catalysis with photochemistry also provides new mechanistic possibilities for cross-couplings
that harness the energy of light to drive bond-formation reactions that would not occur in ground states.
However, the nature of inorganic intermediates and the important ultrafast transition metal excited state
relaxation processes in ground and excited state cross-coupling reactions are not well understood. This
proposal therefore applies physical inorganic approaches to develop a fundamental knowledge base
of the geometric and electronic structures of the critical inorganic species formed in Cu- and Ni-
catalyzed cross-coupling reactions, as well as the time and energy evolution of photoinduced electronic
states involved in excited state catalysis. This knowledge base will ultimately guide the development of
a molecular engineering approach to ligand development and catalyst discovery. We will bring new
spectroscopic methods to the field, including variable temperature variable field magnetic circular
dichroism (VTVH MCD) and X-ray absorption and emission spectroscopies, which will be critical to
quantitatively define transition metal electronic structure, including multireference character. Ultrafast
optical and X-ray spectroscopic approaches will also be used to define the key photonic energy
distribution pathways that define photocatalyst efficiency and further guide ligand perturbations to
control the excited state potential energy surfaces (PESs) of photocatalysts. Spectral features of
isolable species will be used to experimentally calibrate computational methods to define the critical
frontier molecular orbitals and bonding interactions that activate metal centers for reactivity, especially
those that are fleeting but critical to catalysis. Electronic structure calculations will also allow for the
translation of our understanding of resting states, intermediates, and excited states to reaction
coordinates in catalysis and the PESs governing relaxation pathways. In concert with collaborative
methodological studies, the proposed research will help inform chemists how to leverage the ground
and excited state electronic structures of first-row transition metal complexes and thus guide academic
and industry research toward sustainable approaches for bond constructions in drug synthesis.
项目概要
开发可持续的分子疗法合成方法对于
药物和药物化学的持续发展和成功。
药物合成涉及过渡金属催化的 C-X(X = C、N、O 等)键形成反应。
虽然钯等贵金属用于这些反应,但第一排过渡金属正在成为
更广泛地采用,因为它们丰富并开辟了涉及一和一的新机械途径
多电子转移反应性,可能与配体非纯真和
多参考电子结构形成变革结构/功能关系。
热催化与光化学的结合也为交叉耦合提供了新的机械可能性
利用光能来驱动在基态下不会发生的成键反应。
然而,无机中间体的性质和重要的超快过渡金属激发态
基态和激发态交叉偶联反应中的弛豫过程尚不清楚。
因此,建议采用物理无机方法来开发基础知识库
Cu- 和 Ni- 中形成的关键无机物质的几何结构和电子结构
催化交叉偶联反应,以及光生电子的时间和能量演化
该知识库最终将指导激发态催化的发展。
我们将带来新的配体开发和催化剂发现的分子工程方法。
场的光谱方法,包括变温变场磁圆
二色性 (VTVH MCD) 和 X 射线吸收和发射光谱,这对于
定量定义过渡金属电子结构,包括超快特征。
光学和 X 射线光谱方法也将用于定义关键的光子能量
定义光催化剂效率并进一步引导配体扰动的分布途径
控制光催化剂的激发态势能表面(PES)的光谱特征。
可分离的物种将用于通过实验校准计算方法来定义临界值
前沿分子轨道和键合相互作用,激活金属中心的反应性,特别是
那些转瞬即逝但对催化至关重要的电子结构计算也将允许进行。
将我们对静息态、中间体和激发态的理解转化为反应
催化协调和控制松弛路径的 PES 与协作一致。
方法论研究,拟议的研究将帮助化学家了解如何利用地面
和第一行过渡金属配合物的激发态电子结构,从而指导学术
以及药物合成中键构建可持续方法的行业研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan G Hadt其他文献
Ryan G Hadt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan G Hadt', 18)}}的其他基金
Understanding Geometric and Electronic Structure Contributions to Ground and Excited State Cu- and Ni-Catalyzed Cross-Coupling Reactions
了解几何和电子结构对基态和激发态铜和镍催化交叉偶联反应的贡献
- 批准号:
10415184 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
Understanding Geometric and Electronic Structure Contributions to Ground and Excited State Cu- and Ni-Catalyzed Cross-Coupling Reactions
了解几何和电子结构对基态和激发态铜和镍催化交叉偶联反应的贡献
- 批准号:
10273133 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别:
相似国自然基金
基于土壤气体传输机制的土壤呼吸气室法测量误差校准研究
- 批准号:32371668
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于MIXED Transformer和DS-TransUNet构建嵌入椎旁肌退变量化模块的体内校准骨密度模型检测骨质疏松的可行性研究。
- 批准号:82302303
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
日冕仪偏振分析的可溯源校准
- 批准号:42374220
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于变分推断和物理约束的机器学习综合方法校准南极冰架流变参数
- 批准号:42376230
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
自校准型嵌段共聚物的精准合成及其三维自组装行为研究
- 批准号:22308059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Exploiting new approaches for selective inhibition of trypsins
开发选择性抑制胰蛋白酶的新方法
- 批准号:
10338695 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Mechanistic Investigation into Modern Catalytic Reactions
现代催化反应的机理研究
- 批准号:
10685545 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Mechanistic Investigation into Modern Catalytic Reactions
现代催化反应的机理研究
- 批准号:
10685545 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Exploiting new approaches for selective inhibition of trypsins
开发选择性抑制胰蛋白酶的新方法
- 批准号:
10542402 - 财政年份:2022
- 资助金额:
$ 41.88万 - 项目类别:
Probing a novel reaction mechanism of nitrogenase with dynamic active-site rearrangements
探讨固氮酶动态活性位点重排的新反应机制
- 批准号:
10366026 - 财政年份:2021
- 资助金额:
$ 41.88万 - 项目类别: