Statistical methods for population-level cell-type-specific analyses of tissue omics data for Alzheimer's disease

阿尔茨海默病组织组学数据的群体水平细胞类型特异性分析的统计方法

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Alzheimer's disease (AD) accounts for 60-80% of dementia cases and causes progressive neurodegeneration that ultimately leads to death. While the number of US people with late-onset AD is expected to reach 13.8 million by 2050, its prevention and treatment remain only modestly effective. Many efforts have been made to study AD pathophysiology by collecting and curating rich omics data from AD-affected or unaffected human brains, e.g., the National Institute on Aging's Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) project. Most of those omics data, such as gene expression, DNA methylation, and proteomics, are collected at the tissue level, and thus the cell-type-specific (CTS) signals are masked. Recently, with the emerging single-cell techniques, single-cell RNA-seq and DNA methylation data have been generated. However, given the difficulty of quantifying a small number of molecules and associated high costs, single-cell data suffer from high technical variation and are constrained to a small number of samples that lack representativity. To address these issues in AD research and accelerate our understanding of cellular multi-omics mechanisms underlying AD, we aim to: 1) Improve estimation of cellular fractions in brain tissue samples by the ensemble over existing methods and considering cell-type hierarchy. 2) Identify CTS differentially methylated regions (DMR) associated with AD. We will consider the spatial correlation of CpG sites and cell-type specificity. 3) We will further build statistical models to systematically integrate those CTS omics estimates via omics-wide association studies and causal mediation analyses. Through extensive analyses of several large cohorts in AMP-AD datasets, we will produce statistically significant and biologically meaningful omics results at an unprecedented population-scale and cell-type resolution, which will improve our understanding of complex AD biology. We will validate our findings using additional data available within and outside the AMP-AD project, including single-cell multi-omics data. The resulting methods will be implemented as efficient computational algorithms via public software readily available to the research community. Successful completion of this project will provide state-of-the-art methods for cell- type deconvolution and integrative multi-omics analyses and advance our knowledge of genes/proteins contributing to AD in selectively vulnerable brain regions and cell types.
项目概要/摘要 阿尔茨海默病 (AD) 占痴呆病例的 60-80%,并导致进行性神经退行性变 最终导致死亡。而美国患有迟发性AD的人数预计将达到1380万 到 2050 年,其预防和治疗效果仍然有限。人们为研究 AD 做出了许多努力 通过收集和整理来自受 AD 影响或未受影响的人类大脑的丰富组学数据来进行病理生理学研究,例如 美国国家老龄化研究所的阿尔茨海默病加速药物合作伙伴关系 (AMP-AD) 项目。 大多数组学数据,例如基因表达、DNA 甲基化和蛋白质组学,都是在组织中收集的 水平,因此细胞类型特异性(CTS)信号被掩盖。近年来,随着单细胞的兴起 技术,单细胞RNA-seq和DNA甲基化数据已经生成。但考虑到难度 由于量化少量分子和相关的高成本,单细胞数据受到高科技的困扰 变化,并且仅限于缺乏代表性的少量样本。为了解决这些问题 在 AD 研究中并加速我们对 AD 背后的细胞多组学机制的理解,我们的目标是: 1)通过现有方法改进集成对脑组织样本中细胞分数的估计 考虑细胞类型层次结构。 2) 识别与 AD 相关的 CTS 差异甲基化区域 (DMR)。我们 将考虑 CpG 位点和细胞类型特异性的空间相关性。 3)我们将进一步建立统计模型 通过全组学关联研究和因果中介系统地整合这些 CTS 组学估计 分析。通过对 AMP-AD 数据集中的几个大型队列进行广泛分析,我们将生成统计数据 在前所未有的群体规模和细胞类型中获得重要且具有生物学意义的组学结果 分辨率,这将提高我们对复杂 AD 生物学的理解。我们将使用以下方法验证我们的发现 AMP-AD 项目内外可用的其他数据,包括单细胞多组学数据。这 由此产生的方法将通过现成的公共软件实现为有效的计算算法 到研究界。该项目的成功完成将为细胞提供最先进的方法 类型反卷积和综合多组学分析并增进我们对基因/蛋白质的了解 在选择性脆弱的大脑区域和细胞类型中导致AD。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher McKennan其他文献

Christopher McKennan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 37.83万
  • 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
  • 批准号:
    10638404
  • 财政年份:
    2023
  • 资助金额:
    $ 37.83万
  • 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
  • 批准号:
    10639274
  • 财政年份:
    2023
  • 资助金额:
    $ 37.83万
  • 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
  • 批准号:
    10648495
  • 财政年份:
    2023
  • 资助金额:
    $ 37.83万
  • 项目类别:
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
  • 批准号:
    10696753
  • 财政年份:
    2023
  • 资助金额:
    $ 37.83万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了