Semiconductor Biomaterials to Speed Bone Healing: A Bioengineering-Driven Approach
半导体生物材料加速骨骼愈合:生物工程驱动的方法
基本信息
- 批准号:10587508
- 负责人:
- 金额:$ 47.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-03 至 2028-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalANGPT1 geneAccelerationAngiopoietinsAntioxidantsAutologousAutologous TransplantationBiocompatible MaterialsBiological AssayBiomaterials ResearchBiomedical EngineeringBiopolymersBlood VesselsBone DensityBone GrowthBone MatrixBone Morphogenetic ProteinsBone RegenerationBone TissueCellsCephalicChemicalsChemistryClinicalClinical TrialsCollagenComplexCysteineDataDefectDepositionDevelopmentDevicesEconomic BurdenElectronsEmergency department visitEndothelial CellsEnvironmentEnzyme-Linked Immunosorbent AssayExcisionFDA approvedFractureFutureGATA1 geneGelatinGeneral PopulationGoalsGrowth FactorHarvestHealth Care CostsHistologyHumanImplantIn VitroInflammationInjuryIonsLeadLesionMedical Care CostsMesenchymal Stem CellsMethodsMissionMorbidity - disease rateMorphologyMusculoskeletalNatural regenerationNitrogenOperative Surgical ProceduresOsteocalcinOsteogenesisPaste substancePathologicPatientsPhosphorusPolymersProcessProteinsRattusReactionRecombinantsRehabilitation therapyResearchResearch PersonnelRoentgen RaysScientistSemiconductorsSignal TransductionSiliconSiteSpeedStimulusStructureSwellingTestingTimeTissuesTitaniumTranslatingTranslationsTraumaUnited States National Institutes of HealthVascular Endothelial CellVascular Endothelial Growth FactorsVascularizationangiogenesisbiomaterial developmentbonebone healingbone repaircell motilityclinically relevantcraniofacialcraniofacial bonedensityeffective therapyfabricationhealinghypoxia inducible factor 1improvedin vivoinnovationmigrationnanocompositenanoparticlenuclear factor-erythroid 2osteogenicpreclinical studypromoterreconstructionrepairedsample fixationscaffoldsocioeconomicsstem cell differentiationvapor
项目摘要
Project Summary
Craniofacial trauma leads to over 10 million emergency room visits per year in the US that cause a vast socio-
economic burden. Unlike small defects, large complex defects arising from traumatic avulsive injuries or
pathologic lesion resection require planned reconstruction or secondary surgery to regain bony union. Yet, these
defects do not spontaneously heal and are known as “critical size defects” (CSD). Attempts to induce bone
formation by vascularized autologous grafts led to donor site morbidity and low harvest volume. Further,
recombinant human bone morphogenic protein (rhBMP2) growth factor used with autograft often produces
harmful inflammation and swelling post-surgery. Alternatively, titanium (Ti) fixation plates lend structural support
to bony fragments but lack bioactivity to speed healing. Moreover, clinically available mesoporous BioglassTM,
FDA-approved polymers, or composite pastes or putties lack needed strength and bioactivity for bone healing.
Our goal is to bioengineer new biomaterials that target healing mechanisms for rapid defect repair. Bone healing
requires rapid regeneration of dense biomineral and vascular tissue, which depends on antioxidant activity to
promote cell migration and osteogenesis by mesenchymal stem cells (MSC) and angiogenesis by endothelial
cells (EC). Our objective is to stimulate bone healing by (1) revealing biomaterial chemistries that target MSC
and EC antioxidant activity (2) atomistically layer these biomaterials as coatings on Ti devices to enhance bone
defect healing; and (3) use new nanoparticles (NPs) chemistries embedded in biopolymer scaffolds for rapid
defect healing. We created silicon oxy-nitro-phosphide (SiONPx) by chemical vapor deposition as new coatings
for Ti mesh and nanoparticles (SiONPx-np) in biopolymer scaffolds that release antioxidant ions (Si4+). We
hypothesize that SiONPx enhances dense bone and vascular tissue healing and rapid bone repair via enhanced
antioxidant activity to promote angiogenesis and osteogenesis. In Aim 1, we will study the effect of Si4+ on the
promotion of these antioxidants during MSCs osteogenesis and ECs angiogenesis. In Aim 2, we will determine
the effect of SiONPx coatings to stimulate antioxidant promoters to hasten the local bone healing environment.
In Aim 3, we will use SiONPx-np-biopolymer scaffolds to stimulate antioxidant promoters to promote cell
migration, angiogenesis, and osteogenesis into scaffold structures to hasten the healing process.
Our central innovation is the development of a new class of implantable and printable materials that can
accelerate healing of craniofacial bone defects. Once such materials/devices become clinically available, there
is the promise that a significant advancement will have been made toward their translation in patients needing
rapid healing of large bone defects or fractures. These results will have a positive impact in supporting future
clinical trials of new antioxidant materials on biomedical devices that can reduce patient healing time, reduce
medical care cost, and increase the quality of newly formed bone in large defects.
项目概要
在美国,颅面外伤每年导致超过 1000 万人次到急诊室就诊,这造成了巨大的社会影响
与小缺陷不同,由创伤性撕脱伤或创伤引起的大的复杂缺陷。
然而,病理病变切除需要计划的重建或二次手术才能恢复骨性愈合。
缺陷不会自发愈合,被称为“临界尺寸缺陷”(CSD)。
血管化自体移植物的形成导致供体部位发病率和低收获量。
重组人骨形态发生蛋白 (rhBMP2) 生长因子与自体移植物一起使用通常会产生
另外,钛 (Ti) 固定板可提供结构支撑。
此外,临床上可用的介孔 BioglassTM,
FDA 批准的聚合物、复合糊剂或油灰缺乏骨愈合所需的强度和生物活性。
我们的目标是通过生物工程设计新的生物材料,以快速修复骨缺损的愈合机制为目标。
需要致密的生物矿物质和血管组织的快速再生,这取决于抗氧化活性
通过间充质干细胞 (MSC) 促进细胞迁移和骨生成,通过内皮细胞促进血管生成
我们的目标是通过 (1) 揭示针对 MSC 的生物材料化学成分来刺激骨愈合。
和 EC 抗氧化活性 (2) 以原子方式将这些生物材料分层作为钛装置上的涂层,以增强骨骼
缺陷愈合;(3)使用嵌入生物聚合物支架的新型纳米颗粒(NP)化学物质来快速愈合
我们通过化学气相沉积创建了氧硝基磷化硅(SiONPx)作为新涂层。
用于生物聚合物支架中的钛网和纳米颗粒 (SiONPx-np),释放抗氧化离子 (Si4+)。
研究发现 SiONPx 通过增强功能来增强致密骨和血管组织的愈合和快速骨修复
抗氧化活性促进血管生成和成骨 在目标 1 中,我们将研究 Si4+ 对血管生成和成骨的影响。
在目标 2 中,我们将确定这些抗氧化剂在 MSC 成骨和 EC 血管生成过程中的促进作用。
SiONPx 涂层可刺激抗氧化剂促进剂,加速局部骨愈合环境。
在目标3中,我们将使用SiONPx-np-生物聚合物支架来刺激抗氧化促进剂促进细胞
迁移、血管生成和骨生成进入支架结构,以加速愈合过程。
我们的核心创新是开发一种新型可植入和可打印材料,该材料可以
一旦此类材料/设备投入临床使用,就会加速颅面骨缺损的愈合。
是承诺在将其翻译给需要治疗的患者方面将取得重大进展
大骨缺损或骨折的快速愈合这些结果将对支持未来产生积极影响。
新型抗氧化材料在生物医学设备上的临床试验可以缩短患者的愈合时间,减少
医疗护理成本,并提高大缺损处新形成骨的质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venu Gopal Varanasi其他文献
Venu Gopal Varanasi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venu Gopal Varanasi', 18)}}的其他基金
Silicon, a Novel Antioxidant Role in Bone Healing
硅,一种新的抗氧化剂,在骨愈合中发挥作用
- 批准号:
8772006 - 财政年份:2014
- 资助金额:
$ 47.95万 - 项目类别:
Improving Biomaterials from a Cellular Point of View
从细胞的角度改进生物材料
- 批准号:
7933243 - 财政年份:2009
- 资助金额:
$ 47.95万 - 项目类别:
Improving Biomaterials from a Cellular Point of View
从细胞的角度改进生物材料
- 批准号:
8096604 - 财政年份:2007
- 资助金额:
$ 47.95万 - 项目类别:
Improving Biomaterials from a Cellular Point of View
从细胞的角度改进生物材料
- 批准号:
7473161 - 财政年份:2007
- 资助金额:
$ 47.95万 - 项目类别:
Improving Biomaterials from a Cellular Point of View
从细胞的角度改进生物材料
- 批准号:
7630506 - 财政年份:2007
- 资助金额:
$ 47.95万 - 项目类别:
Improving Biomaterials from a Cellular Point of View
从细胞的角度改进生物材料
- 批准号:
7240232 - 财政年份:2007
- 资助金额:
$ 47.95万 - 项目类别:
Improving Biomaterials from a Cellular Point of View
从细胞的角度改进生物材料
- 批准号:
8096604 - 财政年份:2007
- 资助金额:
$ 47.95万 - 项目类别:
相似海外基金
Tissue Engineering Strategies to Revitalize Allografts
振兴同种异体移植物的组织工程策略
- 批准号:
10830613 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
Modulating aqueous humor outflow with engineered nanoparticles for glaucoma
用工程纳米颗粒调节房水流出以治疗青光眼
- 批准号:
10649763 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
ANG1-7 as an intervention for Alzheimer's Disease.
ANG1-7 作为阿尔茨海默病的干预措施。
- 批准号:
10592577 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
Targeting the ANG/TIE2 pathway to treat Alzheimer's disease and related dementias
靶向 ANG/TIE2 通路治疗阿尔茨海默病和相关痴呆症
- 批准号:
10739485 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别:
PDGF-BB and the metastatic brain microenvironment
PDGF-BB和转移性脑微环境
- 批准号:
10718597 - 财政年份:2023
- 资助金额:
$ 47.95万 - 项目类别: