Mechanisms of Action of Natural Genetic Variation
自然遗传变异的作用机制
基本信息
- 批准号:10587460
- 负责人:
- 金额:$ 38.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-09 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffinityAllelesAmino Acid SequenceAtlasesBiologicalBiological ModelsBiologyBiotechnologyCatalogsCell modelCellular biologyChromosome MappingClassificationCollectionComplexDNADNA-Directed RNA PolymeraseDataDiagnosisDiseaseEnvironmentEtiologyFoundationsGene ExpressionGene Expression RegulationGenesGeneticGenetic ModelsGenetic PolymorphismGenetic VariationGenomeGenomic approachGenomicsGenotypeGoalsHaplotypesHuman GenomeIndividualIntelligenceIntuitionKnowledgeLinkMapsMeasurementMedicalMedicineMessenger RNAMissense MutationModelingMolecularMutationNucleosomesNucleotidesOpen Reading FramesPathologyPatientsPhenotypePlayPositioning AttributePropertyProteinsProteomicsRNARNA-Binding ProteinsReadingResolutionResourcesRoleSaccharomyces cerevisiaeSaccharomycetalesShapesStructureSystemTechnologyTestingTimeTissuesTrainingTranscriptTranscription InitiationTranslationsValidationVariantWritingcausal variantcell typedisorder riskexperimental studyfunctional genomicsgene environment interactiongenetic architecturegenetic manipulationgenetic variantgenomic datagenotyped patientshistone modificationhuman diseaseinsightmodel organismpatient populationpersonalized medicineprecision medicinepredictive modelingrecruitsegregationtooltraittranscriptomicsultra high resolutionvariant of unknown significance
项目摘要
PROJECT SUMMARY
Although we can readily determine a patient's genotype, we often cannot accurately predict their risk for
disease or ascertain which of many variants of uncertain significance might underlie a pathology. Indeed,
medically relevant phenotypes may emerge from the combination of thousands of polymorphisms. Complicating
matters, the effects of genetic variants are not constant across individuals due to interactions with other variants
in the genome and the environment. This project aims to build a fundamental understanding of which genetic
variants give rise to complex traits and why.
To do so, we will exploit a unique model system in the budding yeast Saccharomyces cerevisiae, in which
we have already identified thousands of nucleotides that determine complex traits. These include regulatory
variants that likely influence gene expression and many synonymous variants that, although often regarded as
'silent,' make substantial contributions to phenotype. Reversing typical functional genomics paradigms, we will
examine the molecular consequences of known causal variants to identify the signatures that make them
important to complex traits. We will focus on ascertaining the predictive power of functional measurements (such
as nucleosome position, histone modification, gene expression level, and protein abundance) as a guide to the
application of these technologies to patient- and tissue-specific genomics. In addition to examining these
molecularly diverse linear contributors to phenotype, we will take advantage of a powerful genetic mapping panel
(which contains more individuals than segregating polymorphisms) to begin dissecting the functional basis of
gene ´ environment interactions and genetic background effects in complex traits.
To chart this atlas of functionally important genetic variation, we will undertake the following specific aims:
1. Define the molecular impact of functional synonymous variants
2. Identify signatures of functional regulatory variants
3. Build integrative genotype-to-molecule-to-phenotype maps
The inherent complexity of quantitative traits is a daunting problem that grows ever-more challenging with
the growing catalog of variants of uncertain significance in the patient population. Using model systems in which
the genotype-to-phenotype relationship can be comprehensively mapped is a powerful approach for
understanding and building predictive models of which variants are likely to be causal. Indeed, linking changes
in DNA both to their molecular consequences and their effects on cellular phenotypes is a central challenge in
genetics that promises to allow the functional classification of never-before-seen mutations. Our approach will
help to understand the fundamental structure of these relationships, with implications for genome reading and
writing in medicine and biotechnology.
项目概要
虽然我们可以很容易地确定患者的基因型,但我们通常无法准确预测他们的风险
疾病或确定许多具有不确定意义的变体中的哪一个可能是病理学的基础。
医学相关的表型可能是由数千个复杂的多态性组合产生的。
重要的是,由于与其他变异的相互作用,遗传变异的影响在个体之间并不恒定
该项目旨在建立对基因组和环境的基本了解。
变异会产生复杂的特征及其原因。
为此,我们将在芽殖酵母酿酒酵母中开发一个独特的模型系统,其中
我们已经鉴定出数千种决定复杂性状的核苷酸。
可能影响基因表达的变体,尽管许多同义变体通常被认为是
“沉默”,对表型做出重大贡献,扭转典型的功能基因组学范式。
检查已知因果变异的分子后果,以确定造成它们的特征
我们将重点关注确定功能测量的预测能力(例如
如核小体位置、组蛋白修饰、基因表达水平和蛋白质丰度)作为指导
将这些技术应用于患者和组织特异性基因组学。
表型的分子多样性线性贡献者,我们将利用强大的遗传图谱面板
(其中包含比分离多态性更多的个体)开始剖析功能基础
复杂性状中的基因与环境相互作用和遗传背景效应。
为了绘制这个具有重要功能的遗传变异图谱,我们将实现以下具体目标:
1. 定义功能同义变异的分子影响
2. 识别功能性监管变体的特征
3. 构建综合基因型到分子到表型图谱
数量性状固有的复杂性是一个令人畏惧的问题,随着
使用模型系统在患者群体中不断增加具有不确定意义的变异。
可以全面绘制基因型与表型关系,这是一种强有力的方法
理解并建立哪些变异可能是因果关系的预测模型,确实将变化联系起来。
DNA 中的分子后果及其对细胞表型的影响是一个核心挑战
我们的方法将有望对从未见过的突变进行功能分类。
有助于理解这些关系的基本结构,对基因组阅读和
医学和生物技术方面的写作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Jarosz其他文献
Daniel Jarosz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Jarosz', 18)}}的其他基金
Protein-based Molecular Memories in Gene Regulation, Disease, and Development
基因调控、疾病和发育中基于蛋白质的分子记忆
- 批准号:
8955209 - 财政年份:2015
- 资助金额:
$ 38.32万 - 项目类别:
Quantitative analysis of the evolving genotype-to-phenotype map
不断演变的基因型到表型图谱的定量分析
- 批准号:
8789365 - 财政年份:2011
- 资助金额:
$ 38.32万 - 项目类别:
Quantitative analysis of the evolving genotype-to-phenotype map
不断演变的基因型到表型图谱的定量分析
- 批准号:
8166021 - 财政年份:2011
- 资助金额:
$ 38.32万 - 项目类别:
Quantitative analysis of the evolving genotype-to-phenotype map
不断演变的基因型到表型图谱的定量分析
- 批准号:
8600700 - 财政年份:2011
- 资助金额:
$ 38.32万 - 项目类别:
Quantitative analysis of the evolving genotype-to-phenotype map
不断演变的基因型到表型图谱的定量分析
- 批准号:
8286206 - 财政年份:2011
- 资助金额:
$ 38.32万 - 项目类别:
Quantitative analysis of the evolving genotype-to-phenotype map
不断演变的基因型到表型图谱的定量分析
- 批准号:
8583028 - 财政年份:2011
- 资助金额:
$ 38.32万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非洲栽培稻抗稻瘟病基因Pi69(t)的功能等位基因克隆及进化解析
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Machine learning of biomolecular interactions and the human signaling networks they comprise
生物分子相互作用及其组成的人类信号网络的机器学习
- 批准号:
10714785 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
Structural modeling of neoantigen presentation for rational design of heteroclitic neoepitope vaccines
新抗原呈递的结构模型,用于合理设计异位新表位疫苗
- 批准号:
10463222 - 财政年份:2022
- 资助金额:
$ 38.32万 - 项目类别:
Proteomic and functional analysis of missense variants of APOE associated with Alzheimer disease risk
与阿尔茨海默病风险相关的 APOE 错义变异的蛋白质组学和功能分析
- 批准号:
10536747 - 财政年份:2022
- 资助金额:
$ 38.32万 - 项目类别:
Proteomic and functional analysis of missense variants of APOE associated with Alzheimer disease risk
与阿尔茨海默病风险相关的 APOE 错义变异的蛋白质组学和功能分析
- 批准号:
10729849 - 财政年份:2022
- 资助金额:
$ 38.32万 - 项目类别:
Mechanisms for cellular copper import via secreted cuproproteins
通过分泌铜蛋白输入细胞铜的机制
- 批准号:
10669776 - 财政年份:2022
- 资助金额:
$ 38.32万 - 项目类别: