Prospective Validation of Neurophysiologic Outcome Prediction in Acute Brain Injury
急性脑损伤神经生理结果预测的前瞻性验证
基本信息
- 批准号:10584338
- 负责人:
- 金额:$ 81.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAcute Brain InjuriesAddressAnticonvulsantsArtificial IntelligenceBindingBioinformaticsBiological MarkersBrainBrain InjuriesCaringCerebrumCessation of lifeChronicChronic PhaseClinicalClinical DataClinical TrialsCollaborationsComputerized Medical RecordCritical IllnessDataData CollectionDatabasesDevelopmentElectroencephalographyEpilepsyEpileptogenesisEquipoiseFutureGeneral HospitalsGeographyGuidelinesHospitalizationHospitalsImageInjuryLearningMachine LearningMassachusettsMeasuresModelingMonitorNeurological outcomeObservational StudyOutcomePathologicPatient-Focused OutcomesPatientsPatternPeriodicalsPharmaceutical PreparationsPhaseProcessPrognosisPropertyPsychological reinforcementResourcesRetrospective StudiesRiskRisk FactorsSample SizeSecondary PreventionSeizuresSiteTechniquesTimeTranslatingUncertaintyUniversitiesUpdateValidationWisconsinWorkloadacquired epilepsybioinformatics infrastructurebrain electrical activitycare outcomesclinical careclinically actionableclinically significantcohortdeep learning modeldetectordisabilityepileptiformfunctional improvementimprovedimproved outcomelarge scale datamachine learning algorithmmachine learning modelmultimodalityneurological recoveryneurophysiologynoveloutcome predictionpredictive modelingpreventprospectivepublic databaseradiological imagingrisk predictionsignal processingtool
项目摘要
PROJECT SUMMARY
Acute brain injury causes over 163,000 deaths in the US annually and leaves many more patients with long-
term disability. Preventing secondary brain injury is critical to improving neurologic outcomes in these patients.
Pathological brain electrical activity (measured via EEG) following acute brain injury contributes to long-term
disability via seizures in the acute phase and epilepsy in the chronic phase. EEG is the primary tool for
monitoring aberrant brain activity, yet it is underutilized due to uncertainty regarding the clinical significance of
EEG findings and the high workload associated with interpreting high volumes of EEG data.
Our group has made progress toward addressing these short-comings by developing three novel machine
learning algorithms: 1) a seizure forecasting model for hospitalized patients (“2HELPS2B”); 2) a model that
measures the Burden of Epileptiform Activity (EA—seizures and highly epileptiform patterns such as lateralized
periodic discharges) to predict neurologic outcomes (“BEACON”); and 3) A model that uses EA in the acute
phase of brain injury to predict the risk of developing epilepsy.
This proposal is the culminating step required to translate preliminary studies into actionable clinical tools. In
this prospective multicenter observational study, we will collect clinical and EEG data on 3000 patients with
acute brain injury to further develop and validate these models. Our study leverages an existing multicenter
bioinformatics infrastructure and established collaborations between Yale University, University of Wisconsin,
and Massachusetts General Hospital, to create the scale and quality of data needed to address three specific
aims: SA1: Develop and prospectively validate an automated in-hospital seizure-forecasting model for use in
acute brain injury, based on our previously developed 2HELPS2B score—termed auto-2HELPS2B; SA2:
Prospectively validate the BEACON model for the impact of prolonged epileptiform activity on functional and
clinical outcomes in critical illness at discharge, 3 months, 6 months, 1-year, and 2-years, and estimate the
optimal anti-seizure drug administration strategy (indications and intensity of drugs) to mitigate detrimental
effects of EA on functional and clinical outcomes; SA3: Prospectively validate EAs as a biomarker of 1- and 2-
year epilepsy risk after acute brain injury, evaluate effects of anti-seizure drugs on acute phase EAs and
subsequent development of epilepsy, and combine EEG with radiographic and clinical information to further
improve our current epilepsy forecasting risk model.
Upon completing these aims, we will have 1. A large and representative database of high-quality EEG and
clinical data on brain-injured patients with 2-year of outcomes data. 2. Validated EEG tools to guide care in
determining acute seizure risk, prognosis for neurological recovery, and the likelihood of developing epilepsy.
项目概要
在美国,急性脑损伤每年导致超过 163,000 人死亡,并导致更多患者长期患病。
预防继发性脑损伤对于改善这些患者的神经系统预后至关重要。
急性脑损伤后的病理性脑电活动(通过脑电图测量)有助于长期
急性期癫痫发作和慢性期癫痫是诊断残疾的主要工具。
监测异常的大脑活动,但由于临床意义的不确定性,它未被充分利用
脑电图结果以及与解释大量脑电图数据相关的高工作量。
我们的团队通过开发三款新型机器,在解决这些缺点方面取得了进展
学习算法:1)住院患者癫痫发作预测模型(“2HELPS2B”);2)
测量癫痫样活动的负担(EA — 癫痫发作和高度癫痫样模式,例如偏侧化
周期性放电)来预测神经系统结果(“BEACON”);以及 3) 在急性发作中使用 EA 的模型;
脑损伤阶段可预测患癫痫的风险。
该提案是将初步研究转化为可行的临床工具所需的最终步骤。
这项前瞻性多中心观察研究,我们将收集 3000 名患有以下疾病的患者的临床和脑电图数据:
我们的研究利用现有的多中心急性脑损伤来进一步开发和验证这些模型。
生物信息学基础设施以及耶鲁大学、威斯康星大学、
和马萨诸塞州总医院,创建解决三个特定问题所需的规模和质量的数据
目标:SA1:开发并前瞻性验证自动院内癫痫发作预测模型,用于
急性脑损伤,基于我们之前开发的 2HELPS2B 评分(称为 auto-2HELPS2B);
前瞻性验证 BEACON 模型对于长期癫痫样活动对功能和功能的影响
出院时、3个月、6个月、1年和2年的危重症临床结果,并估计
减轻疼痛的最佳抗癫痫药物给药策略(药物的适应症和强度)
EA 对功能和临床结果的影响;SA3:前瞻性验证 EA 作为 1- 和 2- 的生物标志物
急性脑损伤后的癫痫风险,评估抗癫痫药物对急性期 EA 的影响和
癫痫的后续发展,并将脑电图与放射线和临床信息相结合,以进一步
改进我们当前的癫痫预测风险模型。
完成这些目标后,我们将拥有 1. 一个大型且具有代表性的高质量脑电图和
脑损伤患者的临床数据以及 2 年结果数据 2. 经验证的脑电图工具可指导护理。
确定急性癫痫发作风险、神经恢复预后以及发生癫痫的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron F Struck其他文献
Non‐ampullary duodenal adenocarcinoma: Factors important for relapse and survival
非壶腹十二指肠腺癌:复发和生存的重要因素
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:2.5
- 作者:
Aaron F Struck;T. Howard;E. Chiorean;J. Clarke;R. Riffenburgh;H. Cardenes - 通讯作者:
H. Cardenes
Aaron F Struck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron F Struck', 18)}}的其他基金
The Juvenile Myoclonic Epilepsy Connectome Project
青少年肌阵挛癫痫连接组项目
- 批准号:
10550233 - 财政年份:2020
- 资助金额:
$ 81.38万 - 项目类别:
The Juvenile Myoclonic Epilepsy Connectome Project
青少年肌阵挛癫痫连接组项目
- 批准号:
10228401 - 财政年份:2020
- 资助金额:
$ 81.38万 - 项目类别:
The Juvenile Myoclonic Epilepsy Connectome Project
青少年肌阵挛癫痫连接组项目
- 批准号:
9887556 - 财政年份:2020
- 资助金额:
$ 81.38万 - 项目类别:
相似国自然基金
通过调控颈淋巴结引流促进急性颅脑损伤后神经修复与再生——基于脑-颈淋巴结通路概念的功能与机制研究
- 批准号:82311530117
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:国际(地区)合作与交流项目
Netrin-1抑制急性缺血性脑损伤中小胶质细胞介导的炎症反应的作用及机制
- 批准号:82171286
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
应用人工智能深度学习技术构建轻中度颅脑损伤急性期颅内血肿进展预判体系的研究
- 批准号:82171381
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
己糖激酶2通过蛋白激酶活性调节星形胶质细胞外泌体生成参与急性缺血性脑损伤
- 批准号:82071321
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于小胶质细胞HMGB1/TLR4/NF-κB信号通路探讨针刺在急性一氧化碳中毒脑损伤中的抗炎机制
- 批准号:
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Feasibility of Using PET Imaging for Detection of Treatment-Induced Changes in Chronic Neuroinflammation Following TBI
使用 PET 成像检测 TBI 后治疗引起的慢性神经炎症变化的可行性
- 批准号:
10703823 - 财政年份:2023
- 资助金额:
$ 81.38万 - 项目类别:
Delineating the kidney brain axis in children with severe malaria (KID-BRAIN)
描绘严重疟疾儿童的肾脑轴(KID-BRAIN)
- 批准号:
10734142 - 财政年份:2023
- 资助金额:
$ 81.38万 - 项目类别:
LRP1 as a novel regulator of CXCR4 in adult neural stem cells and post-stroke response
LRP1 作为成体神经干细胞和中风后反应中 CXCR4 的新型调节剂
- 批准号:
10701231 - 财政年份:2023
- 资助金额:
$ 81.38万 - 项目类别:
Pterygopalatine Fossa (PPF) Block as an Opioid Sparing Treatment for AcuteHeadache in Aneurysmal Subarachnold Hemorrhage
翼腭窝 (PPF) 阻滞作为阿片类药物节省治疗动脉瘤性蛛网膜下腔出血的急性头痛
- 批准号:
10584712 - 财政年份:2023
- 资助金额:
$ 81.38万 - 项目类别: