Administrative Supplements for Equipment Purchases for NIGMS-Funded Award: Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence
NIGMS 资助的设备采购行政补充:通过相关力和荧光量化生物分子凝聚体的生理和病理粘弹性相
基本信息
- 批准号:10582189
- 负责人:
- 金额:$ 24.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdministrative SupplementAwardC9ORF72Cell NucleusCell physiologyCellsChromatinCytoplasmic GranulesDNADevelopmentDiffuseDiseaseEnhancersFluorescenceFluorescence MicroscopyFluorescence Recovery After PhotobleachingFundingGene ExpressionGene Expression RegulationGenetic TranscriptionGoalsHealthHumanIn VitroLengthLiquid substanceMapsMeasurementMicrofluidicsMolecularNational Institute of General Medical SciencesNeurodegenerative DisordersNuclearOutputParentsPathologicPathway interactionsPhasePhase TransitionPhysiologicalPlayProcessPropertyProteinsRNARegulationReportingResearchRibonucleoproteinsRoleSiteSolidSpectrum AnalysisStructureSystemTechniquesbasecellular pathologyequipment acquisitionfrontotemporal lobar dementia-amyotrophic lateral sclerosisinsightlaser tweezernoveloptical trapsprogramssingle moleculetooltranscription factorviscoelasticity
项目摘要
SUMMARY
In recent years, it has become increasingly clear that the material properties of biomolecular condensates
(BMCs), which are formed via liquid-liquid phase separation, play crucial roles in both cellular physiology and
pathology. Nevertheless, mechanistic understandings of the molecular determinants and modulators of BMC
viscoelastic phases remain incomplete due to the limitations of currently available techniques to probe their
dynamics across single-molecule to mesoscale. The goal of this proposal is to address this critical gap by the
development of a multi-parametric experimental toolbox that simultaneously reports on condensate structure
and dynamics across different length scales, with high sensitivity. Our approach will feature correlative multicolor
single-molecule fluorescence microscopy, single-molecule spectroscopy, dual-trap optical tweezers, and
microfluidics. Utilizing our novel toolbox, we will decipher the mechanisms of liquid-to-liquid and liquid-to-solid
phase transitions of intracellular BMCs, processes that critically contribute to the onset or development of many
neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD).
Commonly used fluorescence microscopy techniques, such as fluorescence recovery after photobleaching
(FRAP), offer only probe-specific protein/RNA diffusivity within the RNP granules. In contrast, our proposed
correlative force-fluorescence microscopy platform will provide a multiscale view of BMC structure and dynamics
by taking advantage of optical tweezer-based rheological and fluid dynamics measurements in conjunction with
quantification of protein/RNA dynamics using single-molecule fluorescence. Recent results from the project
supported by the parent award clearly established that BMCs are network fluids where the network connectivity
and dynamics govern their functional output. These results, in conjunction with our recent discovery that
oncofusion transcription factors reprogram gene expression via ectopic phase separation in the nucleus,
collectively led us to hypothesize that BMC network structure and dynamics from single-molecule-to-mesoscale
precisely orchestrate gene regulation within the nuclear chromatin. Overall, our research program will address
three Key Challenges (KCs): (a) we will develop a novel multi-parametric approach based on correlative single-
molecule fluorescence microscopy, single-molecule spectroscopy, and dual-trap optical tweezer that
simultaneously reports on molecular and mesoscale protein-RNA condensate structure and dynamics in vitro
and in live cells (KC 1), (b) we will apply our toolbox to map the transition pathways of physiologic BMCs to
pathologic states in c9orf72 repeat expansion disorder (KC 2), and (c) we will identify mechanisms of
transcriptional condensate formation, regulation, and function at DNA enhancer sites (KC 3). Our studies will
provide new insights into the determinants of functional BMC material states, dynamics, and composition, as
well as identify novel pathways of their pathologic alterations.
概括
近年来,人们越来越清楚生物分子凝聚体的材料特性
通过液-液相分离形成的 BMC(BMC)在细胞生理学和细胞生物学中发挥着至关重要的作用。
病理。尽管如此,对 BMC 的分子决定因素和调节剂的机制理解
由于目前可用的探测技术的局限性,粘弹性相仍然不完整。
从单分子到介观尺度的动力学。该提案的目标是通过
开发同时报告凝聚态结构的多参数实验工具箱
和不同长度尺度的动态,具有高灵敏度。我们的方法将采用相关的多色
单分子荧光显微镜、单分子光谱、双阱光镊和
微流体学。利用我们新颖的工具箱,我们将破译液体到液体和液体到固体的机制
细胞内 BMC 的相变,这一过程对许多疾病的发生或发展至关重要
神经退行性疾病,包括肌萎缩侧索硬化症(ALS)和额颞叶痴呆(FTD)。
常用的荧光显微镜技术,例如光漂白后的荧光恢复
(FRAP),仅提供 RNP 颗粒内探针特异性蛋白质/RNA 扩散率。相比之下,我们提出的
相关力荧光显微镜平台将提供 BMC 结构和动力学的多尺度视图
通过利用基于光镊的流变学和流体动力学测量结合
使用单分子荧光定量蛋白质/RNA 动力学。该项目的最新成果
得到母公司奖项的支持,明确规定 BMC 是网络流体,其中网络连接
和动力学控制它们的功能输出。这些结果与我们最近的发现相结合
肿瘤融合转录因子通过细胞核中的异位相分离重新编程基因表达,
共同引导我们假设 BMC 网络结构和动力学从单分子到介观尺度
精确协调核染色质内的基因调控。总的来说,我们的研究计划将解决
三个关键挑战(KC):(a)我们将开发一种基于相关单参数的新颖的多参数方法
分子荧光显微镜、单分子光谱和双阱光镊
同时报告分子和介观尺度蛋白质-RNA 凝聚体的结构和体外动力学
在活细胞 (KC 1) 中,(b) 我们将应用我们的工具箱来绘制生理 BMC 的转变路径
c9orf72 重复扩增障碍 (KC 2) 的病理状态,并且 (c) 我们将确定
DNA 增强子位点 (KC 3) 的转录凝聚体形成、调节和功能。我们的研究将
为功能性 BMC 材料状态、动力学和成分的决定因素提供新的见解,如
并确定其病理改变的新途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Priya R. Banerjee其他文献
Temperature-dependent reentrant phase transition of RNA–polycation mixtures
- DOI:
10.1039/d1sm01557e - 发表时间:
2021-12 - 期刊:
- 影响因子:3.4
- 作者:
Paul Pullara;Ibraheem Alshareedah;Priya R. Banerjee - 通讯作者:
Priya R. Banerjee
Sequence-specific interactions determine viscoelasticity and aging dynamics of protein condensates
序列特异性相互作用决定蛋白质凝聚物的粘弹性和老化动力学
- DOI:
10.1101/2023.04.06.535902 - 发表时间:
2023-04-06 - 期刊:
- 影响因子:0
- 作者:
Ibraheem Alshareedah;W. Borcherds;Samuel R. Cohen;Anurag Singh;Ammon E. Posey;M. Farag;Anne Bremer;Gregory W. Strout;Dylan T. Tomares;Rohit V. Pappu;Tanja Mittag;Priya R. Banerjee - 通讯作者:
Priya R. Banerjee
Diffusiophoresis promotes phase separation and transport of biomolecular condensates
扩散电泳促进生物分子凝聚物的相分离和传输
- DOI:
10.1101/2023.07.03.547532 - 发表时间:
2023-07-03 - 期刊:
- 影响因子:0
- 作者:
Viet Sang Doan;Ibraheem Alshareedah;Anurag Singh;Priya R. Banerjee;Sangwoo Shin - 通讯作者:
Sangwoo Shin
Sequence-specific interactions determine viscoelasticity and ageing dynamics of protein condensates
序列特异性相互作用决定蛋白质凝聚物的粘弹性和老化动力学
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:19.6
- 作者:
Ibraheem Alshareedah;W. Borcherds;Samuel R. Cohen;Anurag Singh;Ammon E. Posey;M. Farag;Anne Bremer;Gregory W. Strout;Dylan T. Tomares;Rohit V. Pappu;Tanja Mittag;Priya R. Banerjee - 通讯作者:
Priya R. Banerjee
Determinants of Viscoelasticity and Flow Activation Energy in Biomolecular Condensates
生物分子凝聚体中粘弹性和流动活化能的决定因素
- DOI:
10.1101/2022.12.30.522262 - 发表时间:
2022-12-31 - 期刊:
- 影响因子:0
- 作者:
Ibraheem Alshareedah;Anurag Singh;Ale;er Quinn;er;Priya R. Banerjee - 通讯作者:
Priya R. Banerjee
Priya R. Banerjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Priya R. Banerjee', 18)}}的其他基金
Developing a screening platform to identify inhibitors of pathological self-assembly of Tau
开发筛选平台来鉴定 Tau 病理性自组装抑制剂
- 批准号:
10323679 - 财政年份:2021
- 资助金额:
$ 24.05万 - 项目类别:
Deciphering the role of low complexity domains in dual specificity kinase function
解读低复杂性结构域在双特异性激酶功能中的作用
- 批准号:
10217666 - 财政年份:2021
- 资助金额:
$ 24.05万 - 项目类别:
Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence Microscopy
通过相关力和荧光显微镜量化生物分子凝聚物的生理和病理粘弹性相
- 批准号:
10231209 - 财政年份:2020
- 资助金额:
$ 24.05万 - 项目类别:
Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence Microscopy
通过相关力和荧光显微镜量化生物分子凝聚物的生理和病理粘弹性相
- 批准号:
10708765 - 财政年份:2020
- 资助金额:
$ 24.05万 - 项目类别:
Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence Microscopy
通过相关力和荧光显微镜量化生物分子凝聚物的生理和病理粘弹性相
- 批准号:
10029306 - 财政年份:2020
- 资助金额:
$ 24.05万 - 项目类别:
Quantifying Physiologic and Pathologic Viscoelastic Phases of Biomolecular Condensates by Correlative Force and Fluorescence Microscopy
通过相关力和荧光显微镜量化生物分子凝聚物的生理和病理粘弹性相
- 批准号:
10437758 - 财政年份:2020
- 资助金额:
$ 24.05万 - 项目类别:
Mechanism of liquid phase homeostasis of prion-like RNA binding proteins
朊病毒样RNA结合蛋白的液相稳态机制
- 批准号:
9809312 - 财政年份:2019
- 资助金额:
$ 24.05万 - 项目类别:
相似海外基金
Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN)Scientific Leadership Center; ADMIN SUPPLEMENT
艾滋病毒/艾滋病干预青少年医学试验网络 (ATN) 科学领导中心;
- 批准号:
10855435 - 财政年份:2023
- 资助金额:
$ 24.05万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 24.05万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 24.05万 - 项目类别:
Developing a culturally adapted implementation program for teleophthalmology use in Latinx communities
制定适合拉丁裔社区远程眼科使用的文化适应实施计划
- 批准号:
10771837 - 财政年份:2023
- 资助金额:
$ 24.05万 - 项目类别:
Mentored research in the intersection of kidney and cardiovascular disease
肾脏和心血管疾病交叉领域的指导研究
- 批准号:
10795588 - 财政年份:2023
- 资助金额:
$ 24.05万 - 项目类别: