Engineering Multicellular Tissue Structure, Function, and Vascularization

工程多细胞组织结构、功能和血管化

基本信息

项目摘要

 DESCRIPTION: The goal of this project is to define multicellular interactions in engineered hepatic tissue that will enable its engraftment and expansion in a living host. In vivo, cell-to-cel communication and cooperation mediated through juxtacrine and paracrine signals is a hallmark of multicellular life, and is thought to play a critical role in the establishment of native tissue functions. Specifically in liver, such interactions appear to be critical for tissue function and regeneration. Unfortunately, few tools currently exist to manipulate multicellular spatial organization; thus little is known about the true impact of tissue architecture to tissue function. During the past 4 years of this collaborative project, the investigators have shown that biomaterials can be used to support the transplantation and peritoneal engraftment of human engineered artificial livers composed of randomly- organized human hepatocytes, endothelial cells and stromal cells. Then, by using novel microtechnology tools to control the organization of these cell types within a 3D context, the team has shown that architecture impacts both the differentiated state of the hepatocyte and the function of the transplanted graft. In addition, the investigators have developed bioprinting tools to build vascular networks in these 3D hydrogels and demonstrated that these improve the survival of co-embedded hepatocytes as well as methods to prevacularize hepatic tissues and thereby accelerate the peritoneal engraftment. In these model systems, we observe that there is a reciprocal interaction via paracrine signals- that is endothelial cells impact hepatocyte function and conversely that hepatocytes impact the endothelial network. Interestingly, many of the paracrine signals are interrelated with perfusion of the network as they are regulated either by shear stress, hypoxia or both. In the current application, the investigators seek to define the spatial dependence on paracrine signaling and perfusion within engineered livers that would efficiently allow them to engraft and expand upon stimulation. The specific aims of this competitive renewal are: (1) To define the role of 3D positioning on paracrine signaling between hepatocytes and endothelial cells in vitro and in vivo, (2) To understand the role of network perfusion on cell function in 3D constructs in vitro and in vivo, and (3) To assess the functional role of network architecture and perfusion on graft expansion in vivo. This project will lead to an integrated understanding of the role of multicellulr organization and cell-cell communication in stabilizing hepatic tissue vascularization and function, and provide new tools and strategies to the broader community to engineer complex multicellular tissues.
 描述:该项目的目的是定义工程肝组织中的多细胞相互作用,这将使其在活宿主中的参与和扩展。在体内,通过近二氨酸和旁分泌信号介导的细胞对电-CEL通信与合作是多细胞生命的标志,被认为在建立天然组织中起着至关重要的作用 功能。特别是在肝脏中,这种相互作用似乎对于组织功能和再生至关重要。不幸的是,目前很少有工具来操纵多细胞空间组织。因此,关于组织结构对组织功能的真正影响知之甚少。 在该协作项目的过去4年中,研究人员表明,生物材料可用于支持人类工程人工生命的移植和腹膜工程,由随机组织的人类肝细胞,内皮细胞和基质细胞组成。然后,通过使用新颖的微技术工具来控制3D上下文中这些细胞类型的组织,该团队表明,体系结构会影响肝细胞的差异化状态和移植移植的移植物的功能。另外, 研究人员已经开发了生物打印工具来在这3D水凝胶中构建血管网络,并证明这些工具改善了共同包裹的肝细胞的存活以及方法,以使肝细胞前进,从而加速腹膜。在这些模型系统中,我们观察到通过旁分泌信号存在相互的相互作用 - 内皮细胞会影响肝细胞功能,相反,肝细胞会影响内皮网络。有趣的是,许多旁分泌信号与网络的灌注相关,因为它们受剪切应力,缺氧或两者的调节。在当前的应用中,研究人员试图定义对工程生活中旁分泌信号传导和灌注的空间依赖,这将有效地使他们植入并扩大刺激。这种竞争性更新的具体目的是:(1)定义3D定位在体外和体内肝细胞和内皮细胞之间的旁分泌信号传导的作用,(2)了解网络灌注对3D构建体在体外和体内和(3)中的作用,以评估网络构造的作用,以评估网络构造的作用。该项目将导致对多细胞组织和细胞 - 细胞通信在稳定肝炎血管形成和功能中的作用的综合理解,并为更广泛的社区提供新的工具和策略,以设计复杂的多细胞组织。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SANGEETA N. BHATIA其他文献

SANGEETA N. BHATIA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SANGEETA N. BHATIA', 18)}}的其他基金

Synthetic vascularization and regeneration in engineered tissues
工程组织中的合成血管化和再生
  • 批准号:
    10566387
  • 财政年份:
    2023
  • 资助金额:
    $ 74.94万
  • 项目类别:
Infection-homing nanosystems as antibacterial therapeutics-delivery platforms
作为抗菌治疗传递平台的感染归巢纳米系统
  • 批准号:
    10205961
  • 财政年份:
    2017
  • 资助金额:
    $ 74.94万
  • 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
  • 批准号:
    7935261
  • 财政年份:
    2009
  • 资助金额:
    $ 74.94万
  • 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
  • 批准号:
    8322073
  • 财政年份:
    2009
  • 资助金额:
    $ 74.94万
  • 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
  • 批准号:
    8048145
  • 财政年份:
    2009
  • 资助金额:
    $ 74.94万
  • 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
  • 批准号:
    8242801
  • 财政年份:
    2009
  • 资助金额:
    $ 74.94万
  • 项目类别:
Modeling human hepatotropic infections in complex tissue organoids
在复杂组织类器官中模拟人类嗜肝感染
  • 批准号:
    7764021
  • 财政年份:
    2009
  • 资助金额:
    $ 74.94万
  • 项目类别:
Engineering Multicellular Tissue Structure, Function, and Vascularization
工程多细胞组织结构、功能和血管化
  • 批准号:
    9305084
  • 财政年份:
    2009
  • 资助金额:
    $ 74.94万
  • 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
  • 批准号:
    7871327
  • 财政年份:
    2009
  • 资助金额:
    $ 74.94万
  • 项目类别:
Engineering Multicellular Tissue Structure, Function and Vascularization
工程多细胞组织结构、功能和血管化
  • 批准号:
    7626617
  • 财政年份:
    2009
  • 资助金额:
    $ 74.94万
  • 项目类别:

相似国自然基金

阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
  • 批准号:
    82302281
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
  • 批准号:
    22304039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
  • 批准号:
    82300173
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
  • 批准号:
    82360957
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
  • 批准号:
    10677169
  • 财政年份:
    2023
  • 资助金额:
    $ 74.94万
  • 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
  • 批准号:
    10643269
  • 财政年份:
    2023
  • 资助金额:
    $ 74.94万
  • 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
  • 批准号:
    10753836
  • 财政年份:
    2023
  • 资助金额:
    $ 74.94万
  • 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
  • 批准号:
    10626281
  • 财政年份:
    2023
  • 资助金额:
    $ 74.94万
  • 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
  • 批准号:
    10761217
  • 财政年份:
    2023
  • 资助金额:
    $ 74.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了