4/7 Psychiatric Genomics Consortium: Advancing Discovery and Impact
4/7 精神病学基因组学联盟:推进发现和影响
基本信息
- 批准号:10577733
- 负责人:
- 金额:$ 38.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-10 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAffectAllelesBiologicalBiologyBiotechnologyCellsClinicalCollaborationsCommunicationCommunitiesCountryDNA ResequencingDataDiagnosticDiseaseEducational MaterialsEnsureEpidemiologyFacebookFamilyFosteringFundingGenesGeneticGenetic VariationGenetsGenomeGenomicsGoalsIndividualIndustryInstitutionInvestmentsJournalsKnowledgeLearningLifeMapsMeasuresMedicalMedicineMendelian randomizationMental disordersMeta-AnalysisMethodsMissionModelingMolecularNational Institute of Mental HealthNatureNeurosciencesOutcomePaperPatientsPhasePhenotypeProductivityPsychiatric DiagnosisPsychiatryRecording of previous eventsReproducibilityResearch PersonnelResistanceResourcesRiskRisk FactorsScienceScientistSourceSymptomsTherapeuticTimeTwitterUpdateVariantWorkbasebiobankcareercase controldigital mediaeducation resourcesexomeexome sequencingexperimental studyfunctional genomicsgenetic architecturegenetic pedigreegenome sequencinggenome wide association studygenomic datagenomic locusimprovedinnovationinsightinstrumentnovelnovel therapeuticsoutreachpatient stratificationpatient subsetspredict clinical outcomepsychiatric genomicsrare variantsevere psychiatric disorderstatisticssuccesstherapeutic developmenttranslational potentialwhole genomeworking group
项目摘要
Project Summary
Now in its 13th year, the Psychiatric Genomics Consortium is perhaps the most innovative and productive
experiment in the history of psychiatry. The PGC unified the field and attracted a cadre of outstanding
scientists (802 investigators from 157 institutions in 41 countries). PGC work has led to identification of ~500
genetic loci in the 11 psychiatric disorders we study. Our work has led to 320 papers, many in high-profile
journals (Nature 3, Cell 5, Science 2, Nat Genet 27, Nat Neurosci 9, Mol Psych 37, Biol Psych 25). As
summary statistics are freely available, psychiatric disorders often feature prominently in papers by non-PGC
investigators. To advance discovery and impact, we propose to continue the work of the PGC across 11
disorder groups. Considerable new data are coming in the next five years. We thus can rapidly and efficiently
increase our knowledge of the fundamental basis of major psychiatric disorders.
Aim 1: we will continue to advance genetic discovery for severe psychiatric disorders in all working groups,
systematically interface with large biobank studies to ensure maximal comparability, and aggressively promote
new studies of individuals with psychiatric disorders from diverse ancestries to increase discovery and improve
fine-mapping. Aim 2: most studies analyze common variation (Aim 1), rare CNV (Aim 2), and rare
exome/genome resequencing results (via collaboration) in isolation: we will apply an integrative framework to
rigorously evaluate the contributions of all measured types of genetic variation on risk for psychiatric disorders.
Aim 3: we will move beyond classical case-control definitions to a more biologically-based and nuanced
understanding by enabling large trans-diagnostic studies, convene trans-disciplinary teams to use genetics to
address unresolved questions about the nature of psychiatric disorders, and to promote large studies of the
severest cases seen in psychiatric practice (leveraging the global reach of PGC investigators). Aim 4: we will
work to maximize the impact of our work via translational efforts: close collaborations with neuroscience
consortia to understand the biological implications of our findings; work to identify modifiable causal risk
factors; and work to robustly predict clinical outcomes and identify patient subsets. Aim 5: we will increase
impact of our work by extending and formalizing outreach to different communities (including pharma and
biotech), via digital media (Twitter, Facebook, Wikipedia), and by developing, distributing, and updating
resources/educational material for patients, families, and medical professionals. We will convene a Scientific
Advisory Board to ensure we respond positively to those invested in our results
Successful completion of this body of work will greatly advance knowledge of the genetic basis of psychiatric
disorders with potentially major nosological and treatment implications. These goals are consistent with a core
mission of the NIMH, and the central idea of the PGC: to convert the family history risk factor into biologically,
clinically, and therapeutically meaningful insights.
项目概要
精神病学基因组学联盟如今已进入第 13 个年头,也许是最具创新性和生产力的联盟
精神病学史上的实验。 PGC统一了领域并吸引了一批优秀的骨干人员
科学家(来自 41 个国家 157 个机构的 802 名研究人员)。 PGC 工作已鉴定出约 500
我们研究的 11 种精神疾病的遗传位点。我们的工作已发表 320 篇论文,其中许多是备受瞩目的论文
期刊(Nature 3、Cell 5、Science 2、Nat Genet 27、Nat Neurosci 9、Mol Psych 37、Biol Psych 25)。作为
摘要统计数据可免费获取,精神疾病通常在非 PGC 的论文中占据显着位置
调查人员。为了推进发现和影响,我们建议继续开展 PGC 的工作,涵盖 11 个领域
紊乱群体。未来五年将会出现大量新数据。因此我们可以快速有效地
增加我们对主要精神疾病的基本原理的了解。
目标 1:我们将继续在所有工作组中推进严重精神疾病的基因发现,
系统地与大型生物库研究对接,以确保最大的可比性,并积极促进
对来自不同血统的精神疾病个体进行的新研究,以增加发现并改善
精细映射。目标 2:大多数研究分析常见变异(目标 1)、罕见 CNV(目标 2)和罕见变异
单独的外显子组/基因组重测序结果(通过合作):我们将应用一个综合框架
严格评估所有测量类型的遗传变异对精神疾病风险的贡献。
目标 3:我们将超越经典的病例对照定义,转向更加基于生物学和细致入微的定义
通过开展大型跨诊断研究来理解,召集跨学科团队利用遗传学来
解决有关精神疾病本质的未解决问题,并促进对精神疾病的大规模研究
精神病学实践中发现的最严重的病例(利用 PGC 研究人员的全球影响力)。目标4:我们将
努力通过转化努力最大限度地发挥我们工作的影响:与神经科学的密切合作
联盟来了解我们的研究结果的生物学意义;努力识别可改变的因果风险
因素;并致力于稳健地预测临床结果并识别患者子集。目标5:我们将增加
通过扩大和正规化对不同社区(包括制药和
生物技术),通过数字媒体(Twitter、Facebook、维基百科)以及开发、分发和更新
为患者、家庭和医疗专业人员提供的资源/教育材料。我们将召开科学
顾问委员会确保我们对那些投资于我们成果的人做出积极回应
成功完成这项工作将极大地增进对精神病学遗传基础的了解
具有潜在重大疾病分类学和治疗影响的疾病。这些目标与核心一致
NIMH 的使命和 PGC 的中心思想:将家族史危险因素转化为生物学、
具有临床和治疗意义的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caroline M Nievergelt其他文献
Caroline M Nievergelt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caroline M Nievergelt', 18)}}的其他基金
Genetic Architecture of Tinnitus and its Relationship to Hearing Loss
耳鸣的遗传结构及其与听力损失的关系
- 批准号:
10480553 - 财政年份:2022
- 资助金额:
$ 38.74万 - 项目类别:
Genetic Architecture of Tinnitus and its Relationship to Hearing Loss
耳鸣的遗传结构及其与听力损失的关系
- 批准号:
10656407 - 财政年份:2022
- 资助金额:
$ 38.74万 - 项目类别:
4/7 Psychiatric Genomics Consortium: Advancing Discovery and Impact
4/7 精神病学基因组学联盟:推进发现和影响
- 批准号:
10388089 - 财政年份:2021
- 资助金额:
$ 38.74万 - 项目类别:
Genomic Predictors of Combat Stress Vulnerability and Resilience
战斗压力脆弱性和恢复力的基因组预测因子
- 批准号:
8083919 - 财政年份:2011
- 资助金额:
$ 38.74万 - 项目类别:
Genomic Predictors of Combat Stress Vulnerability and Resilience
战斗压力脆弱性和恢复力的基因组预测因子
- 批准号:
8464799 - 财政年份:2011
- 资助金额:
$ 38.74万 - 项目类别:
Genomic Predictors of Combat Stress Vulnerability and Resilience
战斗压力脆弱性和恢复力的基因组预测因子
- 批准号:
8305627 - 财政年份:2011
- 资助金额:
$ 38.74万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 38.74万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 38.74万 - 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 38.74万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 38.74万 - 项目类别:
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
- 批准号:
10696753 - 财政年份:2023
- 资助金额:
$ 38.74万 - 项目类别: