Elucidating the role of mechanical forces in diabetic wound healing
阐明机械力在糖尿病伤口愈合中的作用
基本信息
- 批准号:10573042
- 负责人:
- 金额:$ 15.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnimal ModelAutomobile DrivingBiologyBlood VesselsCellsChronicCicatrixClinicalDataDatabasesDebridementDiabetes MellitusDiabetic mouseEcologyElectronic Health RecordEngineeringEnvironmentEvaluationFibroblastsFundingFutureHumanImpaired healingImpaired wound healingImpairmentIn VitroKineticsLower ExtremityMachine LearningMechanicsMedical ResearchMethodologyModelingModernizationMusOutpatientsPathologicPathologyPatientsPopulationPopulation DynamicsPostdoctoral FellowProcessRecommendationResearchResearch TrainingRoleSamplingScientistSkinSplint DeviceSystemTechniquesTechnologyTherapeuticTimeTissuesTranslatingTreatment EfficacyUnited StatesUnited States National Institutes of HealthVisitWorkWound modelsblood vessel developmentcareercell behaviorclinical trainingdiabeticdiabetic ulcerdiabetic wound healingdiagnostic biomarkerefficacy evaluationelectronic health dataelectronic health record systemhealingimprovedinformation modelinterestlimb amputationmachine learning methodmechanical forcemouse modelneovascularizationnext generation sequencingnon-diabeticnon-healing woundsnovelpredictive modelingpressureresponseroutine caresingle cell analysissingle cell sequencingsingle-cell RNA sequencingskin ulcerstem cellstissue injurytreatment strategywastingwoundwound carewound closurewound environmentwound healingwound treatment
项目摘要
PROJECT SUMMARY / ABSTRACT
Diabetes profoundly impairs the tissue repair process, leading to chronic non-healing wounds, which represent
a leading cause of lower limb amputations. The role of vascular pathology in impaired diabetic wound healing
(“under healing”) has been well established, and the role of external mechanical forces across wounds in
promoting excessive scar formation (“over healing”) is similarly well studied. However, the mechanisms through
which these countervailing systems interact within diabetic tissue to yield non-healing skin ulcers have yet to be
thoroughly examined. During prior years of NIH-funded research, important contributions have been made to our
knowledge of the critical role of vascular progenitor cells in normal and diabetic wound healing. These include
the first studies on single cell analysis of diabetic subpopulations during wound healing in both mice and humans,
which identified specific cell subtype depletions that contribute to impaired blood vessel formation and delayed
healing. More recently, the role of mechanoresponsive fibroblast populations in driving excessive skin scarring
and ineffective wound closure has been examined in similar pathologic states. To understand the effects of
diabetes and mechanical force on cell population dynamics with greater precision, we have developed novel
single cell techniques to identify critical perturbations in cell subpopulations. In this proposal, we will apply these
emerging -omics technologies to characterize the behavior of cell populations in non-healing diabetic wounds. It
is our fundamental hypothesis that local tissue mechanical forces contribute to the disruption of cellular ecology
in diabetic wound healing and that mitigation of these forces can improve healing. To achieve this, we will first
employ a novel multiplex approach to high-throughput single cell sequencing to evaluate changes to cell
populations in human diabetic wounds healing under different mechanical environments (Specific Aim 1). We
will then confirm the changes in human diabetic cell populations using animal models, while more precisely
assessing the effect of skin tension on healing kinetics (Specific Aim 2), which will further clarify the functional
role of these cells. Finally, we will use real world data (RWD) from electronic health records to evaluate the
efficacy of therapies aimed at offsetting mechanical forces, in order to develop clinical models to guide treatment
strategies (Specific Aim 3). Collectively, this work will enhance our understanding of diabetic wound biology and
its interaction with the external mechanical environment, paving the way for future therapeutic approaches, while
also providing generalizable clinical recommendations for force offloading therapies that can be readily applied
to guide treatment decisions at wound centers across the United States. The studies described in this proposal
reflect the multi-faceted approach to translational medical research that I hope to achieve moving forward in my
career as a clinician scientist.
项目概要/摘要
糖尿病严重损害组织修复过程,导致慢性不愈合伤口,这代表
血管病理学在糖尿病伤口愈合受损中的作用。
(“愈合中”)已经得到很好的证实,并且外部机械力在伤口中的作用
促进过度疤痕形成(“过度愈合”)同样得到了很好的研究,但是其机制。
这些抵消系统在糖尿病组织内相互作用以产生不愈合的皮肤溃疡尚未得到证实
在 NIH 资助的前几年研究中,我们已经做出了重要贡献。
了解血管祖细胞在正常和糖尿病伤口愈合中的关键作用。
首次对小鼠和人类伤口愈合期间糖尿病亚群进行单细胞分析的研究,
确定了导致血管形成受损并延迟的特定细胞亚型消耗
最近,机械反应性成纤维细胞群在驱动过度皮肤疤痕中的作用。
并在类似的病理状态下检查了无效的伤口闭合,以了解其影响。
糖尿病和机械力对细胞群动态的影响更精确,我们开发了新的
在本提案中,我们将应用这些单细胞技术来识别细胞亚群中的关键扰动。
新兴的组学技术来表征不愈合糖尿病伤口中细胞群的行为。
我们的基本假设是局部组织机械力会破坏细胞生态
在糖尿病伤口愈合中,减轻这些力量可以改善愈合。
采用新颖的多重方法进行高通量单细胞测序来评估细胞的变化
不同机械环境下人类糖尿病伤口愈合的人群(具体目标 1)。
然后将使用动物模型确认人类糖尿病细胞群的变化,而更准确地说
评估皮肤张力对愈合动力学的影响(具体目标 2),这将进一步阐明功能
最后,我们将使用电子健康记录中的真实世界数据(RWD)来评估
旨在抵消机械力的疗法的功效,以开发指导治疗的临床模型
总的来说,这项工作将增强我们对糖尿病伤口生物学和糖尿病伤口的理解。
它与外部机械环境的相互作用,为未来的治疗方法铺平了道路,同时
还为易于应用的力卸载疗法提供通用的临床建议
指导美国各地伤口中心的治疗决策。
反映了我希望在我的职业生涯中取得进展的转化医学研究的多方面方法
临床科学家的职业生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Januszyk其他文献
Michael Januszyk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Respiratory Sensor for Animal Model Research
用于动物模型研究的呼吸传感器的开发
- 批准号:
10697651 - 财政年份:2023
- 资助金额:
$ 15.01万 - 项目类别:
Development of a Respiratory Sensor for Animal Model Research
用于动物模型研究的呼吸传感器的开发
- 批准号:
10697651 - 财政年份:2023
- 资助金额:
$ 15.01万 - 项目类别:
Cancer Hijacks Enzyme Substrate Mutations to Facilitate Tumorigenesis
癌症劫持酶底物突变促进肿瘤发生
- 批准号:
10557137 - 财政年份:2022
- 资助金额:
$ 15.01万 - 项目类别:
Cancer Hijacks Enzyme Substrate Mutations to Facilitate Tumorigenesis
癌症劫持酶底物突变促进肿瘤发生
- 批准号:
10435664 - 财政年份:2022
- 资助金额:
$ 15.01万 - 项目类别:
Multiscale Computational Oncology Research Core
多尺度计算肿瘤学研究核心
- 批准号:
10708204 - 财政年份:2022
- 资助金额:
$ 15.01万 - 项目类别: