Deciphering the molecular mechanisms of TNT formation and function using a multi-omic approach
使用多组学方法解读 TNT 形成和功能的分子机制
基本信息
- 批准号:10559527
- 负责人:
- 金额:$ 28.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseAmericanAmyloid beta-ProteinAmyotrophic Lateral SclerosisAntigensAwardBindingBiological AssayBiological MarkersBiological ModelsCD4 Positive T LymphocytesCategoriesCell Culture SystemCell LineCell membraneCellsChemoresistanceCommunicable DiseasesComplexCytoplasmDetectionDiscriminationDiseaseDisparityEndocytic VesicleEventFilopodiaFlow CytometryFluorescence MicroscopyFutureGenetic MaterialsGenomicsGoalsGrantHIV-1HealthHerpesvirus 1Human T-lymphotropic virus 1Huntington DiseaseHypoxiaImmune EvasionImmunologic SurveillanceIn VitroIndividualInfectionInfluenzaInjuryIschemiaLightMalignant NeoplasmsMalignant neoplasm of ovaryMalignant neoplasm of pancreasMalignant neoplasm of urinary bladderMass Spectrum AnalysisMediatingMediatorMembraneMembrane FusionMessenger RNAMetabolicMethodsMolecularMorphologyMultiple MyelomaNanotubesNeoplasm MetastasisNeurodegenerative DisordersNeuronsOrganellesParkinson DiseasePathogenicityPathway interactionsPhysiologicalPilot ProjectsPlayPrionsProcessProliferatingProteinsProteomeProteomicsProtocols documentationRecoveryReproducibilityResearchRetroviridaeRoleSignal PathwaySignal TransductionSignaling ProteinSpeedSquamous cell carcinomaStimulusStructureSubcellular structureTechnologyTestingTimeTissuesUnited States National Institutes of HealthVirusalpha synucleinbiomarker identificationcell typedetection limitin vivolaser capture microdissectionleukemiamalignant breast neoplasmmisfolded proteinmultiple omicsneoplastic cellnervous system disordernovelnovel strategiesparticlepathogenprotein aggregationprotein complexrelease of sequestered calcium ion into cytoplasmsample fixationtau Proteinstraffickingtranscriptometumor progression
项目摘要
Our research is focused on the role of tunneling nanotubes (TNTs)—a novel mechanism of functional
connectivity between cells—in the spreading of viruses, misfolded protein aggregates (leading to
neurodegenerative diseases), as well as the part they may play in the proliferation and persistence of cancer.
TNTs have been found in numerous cell types, allowing the transport of cytosolic and membrane-bound
molecules, organelles, calcium flux, and the spreading of pathogens. In vitro, these structures are very
heterogeneous and numerous disparities have emerged both in their structure and functions. Similar filopodia-
like structures also exist in vivo and in tissue explants. Unfortunately, little is currently known about the basic
mechanism of TNT formation, their structural components, or the signaling pathways involved.
Recent studies have revealed that TNTs do play an important physiological role in both health and
disease. Indeed, TNTs are significant mediators of electrical, antigen, and genomic signaling, while also
promoting cellular recovery after ischemic, inflamatory, and hypoxic injury. What's more, retroviruses, such as
the HIV-1, HSV-1, HTLV-1, and influenza exploit these subcellular structures to facilitate infection by evading
immune surveillance. Moreover, pathogenic particles and proteins, such as Aβ, prions, and HIV-1 Nef, are
found to induce, and then usurp TNT-like structures to spread between cells. Spreading through TNTs is highly
efficient, since it avoids diffusive transfer and evades immune detection. Finally, TNTs can mediate the direct
transfer of metabolic and genetic material between tumor cells and their stroma enhancing tumor cell
chemoresistance, tumor progression, and metastasis.
With a previous NIH SCORE SC2 Pilot Project Award, we successfully developed a novel method to
specifically isolate distinct protrusion subtypes—based on their morphology or fluorescent markers—using
laser capture microdissection (LCM). Combined with a unique fixation and protein extraction protocol, we
pushed the limits of microproteomics and demonstrated that proteins from LCM-isolated protrusions can
successfully and reproducibly be identified by mass spectrometry using ultra-high field Orbitrap technologies.
Finally, our method confirmed that different subtypes of protrusions have distinct proteomes. Therefore, our
method created a unique opportunity to characterize TNTs shedding light on their role in health and disease.
In this SCORE SC1 grant, we propose a three-step strategy to utilize our LCM/MS method to study
TNT formation and function. This entails: 1) Expanding the TNT proteome by incorporating different cell types,
induction methods, and TNT substructures using our LCM/MS method; 2) Collecting the TNT transcriptome to
limit the detection bias of the individual platforms while at the same time cross-validating TNT protein/pathway
identifications; and, 3) Identifying conserved TNT proteins and pathways, as well as potentially druggable
proteins and biomarkers.
我们的研究重点是隧道纳米管(TNT)的作用——一种新的功能机制
细胞之间的连接——在病毒传播过程中,错误折叠的蛋白质聚集体(导致
神经退行性疾病),以及它们在癌症增殖和持续存在中可能发挥的作用。
TNT 已在多种细胞类型中发现,允许运输胞质和膜结合的物质
分子、细胞器、钙通量和病原体的传播在体外,这些结构非常重要。
它们的结构和功能都出现了异质性和巨大的差异。
类似的结构也存在于体内和组织外植体中,不幸的是,目前人们对这种基本结构知之甚少。
TNT 形成的机制、其结构成分或所涉及的信号通路。
最近的研究表明,TNT 确实在健康和健康方面发挥着重要的生理作用。
事实上,TNT 是电、抗原和基因组信号传导的重要介质,同时也是疾病的重要介质。
促进缺血、炎症和缺氧损伤后的细胞恢复此外,逆转录病毒,例如
HIV-1、HSV-1、HTLV-1 和流感利用这些亚细胞结构通过逃避来促进感染
此外,Aβ、朊病毒和 HIV-1 Nef 等致病颗粒和蛋白质也受到免疫监视。
发现诱导并篡夺 TNT 样结构在细胞之间传播。
高效,因为它避免了扩散转移并逃避免疫检测。最后,TNT 可以介导直接作用。
肿瘤细胞与其基质之间代谢和遗传物质的转移增强肿瘤细胞
化疗耐药性、肿瘤进展和转移。
凭借之前的 NIH SCORE SC2 试点项目奖,我们成功开发了一种新方法
根据其形态或荧光标记,专门分离不同的突起亚型
激光捕获显微切割 (LCM) 与独特的固定和蛋白质提取方案相结合。
突破了微蛋白质组学的极限,并证明来自 LCM 分离突起的蛋白质可以
使用超高场 Orbitrap 技术通过质谱法成功且可重复地识别。
最后,我们的方法证实了不同亚型的突起具有不同的蛋白质组,因此,我们的方法。
该方法创造了一个独特的机会来表征 TNT,揭示它们在健康和疾病中的作用。
在 SCORE SC1 资助中,我们提出了一个三步策略,利用我们的 LCM/MS 方法来研究
TNT 的形成和功能需要:1) 通过整合不同的细胞类型来扩展 TNT 蛋白质组,
诱导方法,以及使用我们的 LCM/MS 方法的 TNT 子结构 2) 收集 TNT 转录组;
限制各个平台的检测偏差,同时交叉验证 TNT 蛋白/通路
鉴定;以及,3) 鉴定保守的 TNT 蛋白和途径,以及潜在的可成药性
蛋白质和生物标志物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KARINE GOUSSET其他文献
KARINE GOUSSET的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KARINE GOUSSET', 18)}}的其他基金
Deciphering the molecular mechanisms of TNT formation and function using a multi-omic approach
使用多组学方法解读 TNT 形成和功能的分子机制
- 批准号:
10333314 - 财政年份:2021
- 资助金额:
$ 28.52万 - 项目类别:
Microproteomic analysis of laser capture microdissected cells forming TNTs
激光捕获显微切割细胞形成 TNT 的微蛋白质组学分析
- 批准号:
9069895 - 财政年份:2014
- 资助金额:
$ 28.52万 - 项目类别:
Microproteomic analysis of laser capture microdissected cells forming TNTs
激光捕获显微切割细胞形成 TNT 的微蛋白质组学分析
- 批准号:
8741090 - 财政年份:2014
- 资助金额:
$ 28.52万 - 项目类别:
Microproteomic analysis of laser capture microdissected cells forming TNTs
激光捕获显微切割细胞形成 TNT 的微蛋白质组学分析
- 批准号:
8910559 - 财政年份:2014
- 资助金额:
$ 28.52万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
MBP酶切L1CAM介导的线粒体自噬在阿尔茨海默病中的作用和机制
- 批准号:81901296
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
- 批准号:
10715238 - 财政年份:2023
- 资助金额:
$ 28.52万 - 项目类别:
CRCNS: Deep Learning to Discover Neurovascular Disruptions in Alzheimer's Disease
CRCNS:深度学习发现阿尔茨海默病的神经血管破坏
- 批准号:
10831259 - 财政年份:2023
- 资助金额:
$ 28.52万 - 项目类别:
Leveraging natural and engineered genetic barcodes from single cell RNA sequencing to investigate cellular evolution, clonal expansion, and associations between cellular genotypes and phenotypes
利用单细胞 RNA 测序中的天然和工程遗传条形码来研究细胞进化、克隆扩增以及细胞基因型和表型之间的关联
- 批准号:
10679186 - 财政年份:2023
- 资助金额:
$ 28.52万 - 项目类别:
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 28.52万 - 项目类别: