Radiogenomics Framework for Non-Invasive Personalized Medicine
非侵入性个性化医疗的放射基因组学框架
基本信息
- 批准号:8837360
- 负责人:
- 金额:$ 51.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdultAlgorithmsArchivesBeliefBioinformaticsBiological MarkersBiopsyBrain NeoplasmsCancer PatientClinicalClinical TreatmentCommunitiesComorbidityDNADNA MethylationDNA Sequence AlterationDNA copy numberDataDevelopmentDiseaseDrug TargetingEGFR geneEdemaEnvironmentEpidermal Growth Factor ReceptorGene ExpressionGene Expression ProfileGenesGenomicsGlioblastomaGliomaGoalsHeterogeneityHigh-Throughput Nucleotide SequencingHumanImageIndividualInstitutionInternetInvestigationLeadLearningLesionLinkLocationMGMT geneMagnetic Resonance ImagingMalignant NeoplasmsMapsMedical ImagingMethodsMethylationMolecularMolecular ProfilingMutationNecrosisNeedle biopsy procedureOncogenesOperative Surgical ProceduresOutcomePatient CarePatientsPatternPharmaceutical PreparationsPhenotypePropertyRNARadiogenomicsResearchResourcesSamplingTechnologyThe Cancer Genome AtlasThree-Dimensional ImageTissuesTranslatingTumor Tissueanticancer researchbasec-erbB-1 Proto-Oncogenescancer imagingcancer siteclinical careclinically relevantcohortempoweredimaging biomarkerin vivoinnovationmalignant breast neoplasmoncologyoperationoutcome forecastpersonalized medicineprognosticprogramsprotein profilingpublic health relevancequantitative imagingradiologistresponsetumor
项目摘要
DESCRIPTION (provided by applicant): Molecular profiles of tumors are nowadays used to determine prognosis and to guide therapy. For example the presence of a mutation in the EGFR gene will most likely lead to anti-EGFR therapy. Recently an image phenotype was discovered that acts as a biomarker of EGFR mutation. This is a precursor of the possibilities of a new emerging field called radiogenomics defined as directly linking imaging features to underlying molecular properties. Research in radiogenomics is rapidly gaining recognition as a powerful new field that has several promising applications, such as non-invasive molecular lesion assessment. When image surrogates can be identified that mirror relevant molecular aberrations (e.g. a mutation in the EGFR gene) they can be readily translated in clinical care. The value added by radiogenomics can be readily translated, as medical imaging is part of routine management in oncology. However, these early applications have not taken full advantage of the opportunities. First, they limit the correlation to either a handful of manually annotated image features and a pre-selected set of molecular parameters. Secondly, the initial applications are limited to a single omics by focusing on gene expression, without taking into account DNA mutations, DNA copy number changes or DNA methylation changes. We will develop a radiogenomics framework to identify non-invasive biomarkers mirroring relevant molecular tumor properties that impact treatment and clinical outcome of human brain tumors. Our objective is not to mimic a radiologist's expertise through computational means, but to empower radiologists and clinicians with new biomarkers. We will offer innovative new algorithms to represent medical images. Once such a representation is computed (e.g., in the form of a large data matrix), we will identify univariate and multivariate image signatures predictive of clinical outcome. Next, we will use sophisticated methods for integration with molecular data to interrogate different views of the data with respect to a clinically relevant outcome. The end result is a radiogenomics map where image signatures of molecular properties and tumor heterogeneity can be hypothesized and validated. We will have image signatures that are prognostic and image signatures reflecting actionable molecular properties of a tumor such as drug target activity or drug signatures.
描述(由申请人提供):如今,肿瘤的分子特征是确定预后和指导治疗的。例如,EGFR基因中存在突变很可能会导致抗EGFR治疗。最近,发现了一个图像表型,该表型充当EGFR突变的生物标志物。这是称为放射基因组学的新出现领域的可能性的前体,该领域被定义为将成像特征与基础分子特性联系起来。放射基因组学的研究正在迅速获得一个有力的新领域,该领域具有多种有希望的应用,例如非侵入性分子病变评估。当可以鉴定出图像替代物可以镜像相关的分子像差(例如,EGFR基因中的突变)可以在临床护理中很容易翻译。放射基因组学添加的值可以很容易地翻译,因为医学成像是肿瘤学常规管理的一部分。但是,这些早期申请并未充分利用机会。首先,它们将相关性限制为少数手动注释的图像特征和一组预选的分子参数。其次,初始应用仅限于单个OMIC,通过关注基因表达,而无需考虑DNA突变,DNA拷贝数变化或DNA甲基化变化。我们将开发一个放射基因组学框架,以识别反映相关分子肿瘤特性的非侵入性生物标志物,这些特性会影响人脑肿瘤的治疗和临床结果。我们的目标不是通过计算手段模仿放射科医生的专业知识,而是要增强放射科医生和临床医生的能力。我们将提供创新的新算法来表示医学图像。一旦计算出这样的表示形式(例如,以大数据矩阵的形式),我们将确定单变量和多变量图像特征,可预测临床结果的预测。接下来,我们将使用复杂的方法与分子数据集成,以询问与临床相关结果的数据的不同观点。最终结果是放射基因组学图,其中可以假设和验证分子特性和肿瘤异质性的图像特征。我们将拥有预后的图像特征和图像特征,以反映肿瘤的可行分子特性,例如药物靶点活动或药物特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olivier Gevaert其他文献
Olivier Gevaert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olivier Gevaert', 18)}}的其他基金
Multi-scale modeling of glioma for the prediction of treatment response, treatment monitoring and treatment allocation
用于预测治疗反应、治疗监测和治疗分配的神经胶质瘤多尺度建模
- 批准号:
10184938 - 财政年份:2021
- 资助金额:
$ 51.55万 - 项目类别:
Multi-scale modeling of glioma for the prediction of treatment response, treatment monitoring and treatment allocation
用于预测治疗反应、治疗监测和治疗分配的神经胶质瘤多尺度建模
- 批准号:
10614974 - 财政年份:2021
- 资助金额:
$ 51.55万 - 项目类别:
Multi-scale modeling of glioma for the prediction of treatment response, treatment monitoring and treatment allocation
用于预测治疗反应、治疗监测和治疗分配的神经胶质瘤多尺度建模
- 批准号:
10397589 - 财政年份:2021
- 资助金额:
$ 51.55万 - 项目类别:
Identification of Cooperative Genetic Alterations in the Pathogenesis of Oral Cancer
口腔癌发病机制中协同遗传改变的鉴定
- 批准号:
8916982 - 财政年份:2015
- 资助金额:
$ 51.55万 - 项目类别:
Radiogenomics framework for non-invasive personalized medicine
非侵入性个性化医疗的放射基因组学框架
- 批准号:
10005534 - 财政年份:2015
- 资助金额:
$ 51.55万 - 项目类别:
Identification of Cooperative Genetic Alterations in the Pathogenesis of Oral Cancer
口腔癌发病机制中协同遗传改变的鉴定
- 批准号:
9084417 - 财政年份:2015
- 资助金额:
$ 51.55万 - 项目类别:
Radiogenomics Framework for Non-Invasive Personalized Medicine
非侵入性个性化医疗的放射基因组学框架
- 批准号:
9012822 - 财政年份:2015
- 资助金额:
$ 51.55万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of stress, social support, and brain function on alcohol misuse in women
压力、社会支持和大脑功能对女性酗酒的影响
- 批准号:
10676428 - 财政年份:2023
- 资助金额:
$ 51.55万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 51.55万 - 项目类别:
Predicting ECMO NeuroLogICal Injuries using mAchiNe Learning (PELICAN)
使用机器学习预测 ECMO 神经损伤 (PELICAN)
- 批准号:
10719312 - 财政年份:2023
- 资助金额:
$ 51.55万 - 项目类别:
Transforming Resuscitation through Artificial INtelligence (TRAIN Study)
通过人工智能改变复苏(TRAIN 研究)
- 批准号:
10712407 - 财政年份:2023
- 资助金额:
$ 51.55万 - 项目类别:
Personalized Profiles of Pathology in Pediatric Traumatic Brain Injury
小儿创伤性脑损伤的个性化病理学概况
- 批准号:
10542834 - 财政年份:2022
- 资助金额:
$ 51.55万 - 项目类别: