Radiogenomics framework for non-invasive personalized medicine
非侵入性个性化医疗的放射基因组学框架
基本信息
- 批准号:10005534
- 负责人:
- 金额:$ 44.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-02-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAreaBiological AssayBiological MarkersBrain NeoplasmsCancer PatientClinicalComputer SimulationComputer Vision SystemsDataData SourcesDevelopmentDiagnosticDiagnostic ImagingDiffusionDrug TargetingDrug usageEpidermal Growth Factor ReceptorEyeGene ExpressionGene Expression ProfileGenesGenomeGenomicsGlioblastomaGoalsHead and Neck CancerHigh-Throughput Nucleotide SequencingHumanImageImage AnalysisIndividualInformaticsInvestigationLesionLettersLinkMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of lungManualsMapsMedical ImagingMedical centerMethodsModelingMolecularMolecular ProfilingMonitorOutcomePathway interactionsPatientsPatternPerfusionPharmaceutical PreparationsPositron-Emission TomographyPrediction of Response to TherapyPrimary carcinoma of the liver cellsProcessPrognostic MarkerPropertyRadiogenomicsRectal CancerResearchResistanceRetrospective cohortShapesSiteSomatic MutationSquamous cell carcinomaTechnologyTextureTherapeuticTimeTranslatingTranslationsTreatment outcomeTumor TissueWorkX-Ray Computed Tomographyactionable mutationbasecancer siteclinical applicationclinical carecohortfollow-upgenome analysisgenome sequencinghuman dataimaging biomarkerimaging modalityimaging studyimproved outcomein vivointerestmalignant breast neoplasmmolecular imagingmultimodalitymultiple omicsmutational statusnovel therapeuticsoutcome forecastoutcome predictionpersonalized medicineprecision medicineprecision oncologypredict clinical outcomepredictive signaturequantitative imagingradiologistradiomicsresponsesupervised learningsynergismtooltranscriptome sequencingtreatment choicetreatment responsetumor
项目摘要
Project summary
Radiogenomics, is a burgeoning area of research that aims to link medical imaging with multi-omics molecular
profiles of the same patients. Radiogenoimcs has shown its potential through its ability to predict clinical
outcomes e.g. prognosis, and through predicting actionable molecular properties of tumors, e.g. the activity of
EGFR, a major drug target in many cancers.
The typical imaging genomics workflow consists of the following steps: (1) Identify the tumor through
segmentation. This is often also defined as identifying Regions Of Interests or ROIs through a manual process
with a radiologist or using computer vision algorithms. (2) Feature extraction, often also known as radiomics,
whereby 100s of features are identified that capture the shape, the texture and the intensity distributions of
lesions in 2D or 3D. (3) Supervised machine learning to predict clinical outcomes such as prognosis, overall
survival or response to treatment, or predicting molecular profiles such as gene expression patterns or
metagenes, or individual molecular properties such as the mutation status of a gene (e.g. EGFR). This
workflow has been demonstrated in several cancers including lung cancer, brain tumors, hepatocellular
carcinoma, breast cancer etc.
Current radiogenomics applications are limited to study associations between imaging and molecular data, and
predicting long term outcomes. However, no actionable information is gained from radiogenomics maps. In this
renewal, we propose to develop a radiogenomics framework to support treatment response, treatment
allocation and treatment monitoring: (1) we will develop informatics algorithms that integrate radiogenomic data
for treatment response, (2) algorithms that allow combining radiogenomic data during treatment follow-up, and
(3) algorithms that use the radiogenomic map to suggest novel drugs and predict drug target activities.
Combining these complementary data sources in a radiogenomics framework for data fusion can have
profound contributions toward predicting treatment outcomes by uncovering unknown synergies and
relationships. More specifically, developing computational models integrating quantitative image features and
molecular data to develop radiogenomics signatures, holds the potential to translate in benefit to tumor patients
by investigating biomarkers that accurately predict therapy response of tumors. Readily, because medical
imaging is part of the routine diagnostic work-up of cancer patients and molecular data of human tumors is
increasingly being used in clinical workflows, therefore if reliable radiogenomic signatures can be found
reflecting treatment response, translation to the clinical applications is feasible.
项目概要
放射基因组学是一个新兴的研究领域,旨在将医学成像与多组学分子联系起来
同一患者的个人资料。放射基因学通过其预测临床的能力显示了其潜力
结果例如预后,并通过预测肿瘤的可操作分子特性,例如的活动
EGFR,许多癌症的主要药物靶点。
典型的成像基因组学工作流程包括以下步骤:(1)通过以下方式识别肿瘤:
分割。这通常也被定义为通过手动过程识别感兴趣区域或投资回报率
与放射科医生或使用计算机视觉算法。 (2)特征提取,通常也称为放射组学,
由此识别出数百个特征,这些特征捕获了形状、纹理和强度分布
2D 或 3D 病变。 (3) 有监督的机器学习来预测临床结果,例如预后、总体情况
生存或对治疗的反应,或预测分子概况,例如基因表达模式或
元基因,或个体分子特性,例如基因的突变状态(例如 EGFR)。这
工作流程已在多种癌症中得到证实,包括肺癌、脑肿瘤、肝细胞癌
癌、乳腺癌等
当前的放射基因组学应用仅限于研究成像和分子数据之间的关联,并且
预测长期结果。然而,从放射基因组学图谱中没有获得可操作的信息。在这个
更新,我们建议开发一个放射基因组学框架来支持治疗反应、治疗
分配和治疗监测:(1)我们将开发整合放射基因组数据的信息学算法
对于治疗反应,(2) 允许在治疗随访期间结合放射基因组数据的算法,以及
(3)利用放射基因组图谱推荐新药并预测药物靶点活性的算法。
将这些互补的数据源结合在放射基因组学框架中进行数据融合可以具有
通过发现未知的协同作用对预测治疗结果做出了深远的贡献
关系。更具体地说,开发集成定量图像特征和
用于开发放射基因组学特征的分子数据有可能为肿瘤患者带来益处
通过研究准确预测肿瘤治疗反应的生物标志物。很容易,因为医疗
成像是癌症患者常规诊断检查的一部分,人类肿瘤的分子数据是
越来越多地在临床工作流程中使用,因此如果可以找到可靠的放射基因组特征
反映治疗反应,转化为临床应用是可行的。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Shallow Convolutional Neural Network Predicts Prognosis of Lung Cancer Patients in Multi-Institutional CT-Image Data.
- DOI:10.1038/s42256-020-0173-6
- 发表时间:2020-05
- 期刊:
- 影响因子:23.8
- 作者:Mukherjee P;Zhou M;Lee E;Schicht A;Balagurunathan Y;Napel S;Gillies R;Wong S;Thieme A;Leung A;Gevaert O
- 通讯作者:Gevaert O
Topological image modification for object detection and topological image processing of skin lesions.
- DOI:10.1038/s41598-020-77933-y
- 发表时间:2020-12-03
- 期刊:
- 影响因子:4.6
- 作者:Vandaele R;Nervo GA;Gevaert O
- 通讯作者:Gevaert O
Structuring clinical text with AI: Old versus new natural language processing techniques evaluated on eight common cardiovascular diseases.
- DOI:10.1016/j.patter.2021.100289
- 发表时间:2021-07-09
- 期刊:
- 影响因子:0
- 作者:Zhan X;Humbert-Droz M;Mukherjee P;Gevaert O
- 通讯作者:Gevaert O
A meta-learning approach for genomic survival analysis.
- DOI:10.1038/s41467-020-20167-3
- 发表时间:2020-12-11
- 期刊:
- 影响因子:16.6
- 作者:Qiu YL;Zheng H;Devos A;Selby H;Gevaert O
- 通讯作者:Gevaert O
AI-based analysis of CT images for rapid triage of COVID-19 patients.
- DOI:10.1038/s41746-021-00446-z
- 发表时间:2021-04-22
- 期刊:
- 影响因子:15.2
- 作者:Xu Q;Zhan X;Zhou Z;Li Y;Xie P;Zhang S;Li X;Yu Y;Zhou C;Zhang L;Gevaert O;Lu G
- 通讯作者:Lu G
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olivier Gevaert其他文献
Olivier Gevaert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olivier Gevaert', 18)}}的其他基金
Multi-scale modeling of glioma for the prediction of treatment response, treatment monitoring and treatment allocation
用于预测治疗反应、治疗监测和治疗分配的神经胶质瘤多尺度建模
- 批准号:
10184938 - 财政年份:2021
- 资助金额:
$ 44.4万 - 项目类别:
Multi-scale modeling of glioma for the prediction of treatment response, treatment monitoring and treatment allocation
用于预测治疗反应、治疗监测和治疗分配的神经胶质瘤多尺度建模
- 批准号:
10614974 - 财政年份:2021
- 资助金额:
$ 44.4万 - 项目类别:
Multi-scale modeling of glioma for the prediction of treatment response, treatment monitoring and treatment allocation
用于预测治疗反应、治疗监测和治疗分配的神经胶质瘤多尺度建模
- 批准号:
10397589 - 财政年份:2021
- 资助金额:
$ 44.4万 - 项目类别:
Identification of Cooperative Genetic Alterations in the Pathogenesis of Oral Cancer
口腔癌发病机制中协同遗传改变的鉴定
- 批准号:
8916982 - 财政年份:2015
- 资助金额:
$ 44.4万 - 项目类别:
Radiogenomics Framework for Non-Invasive Personalized Medicine
非侵入性个性化医疗的放射基因组学框架
- 批准号:
8837360 - 财政年份:2015
- 资助金额:
$ 44.4万 - 项目类别:
Identification of Cooperative Genetic Alterations in the Pathogenesis of Oral Cancer
口腔癌发病机制中协同遗传改变的鉴定
- 批准号:
9084417 - 财政年份:2015
- 资助金额:
$ 44.4万 - 项目类别:
Radiogenomics Framework for Non-Invasive Personalized Medicine
非侵入性个性化医疗的放射基因组学框架
- 批准号:
9012822 - 财政年份:2015
- 资助金额:
$ 44.4万 - 项目类别:
相似国自然基金
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颜面缺损修复三维目标参照数据构建的区域权重非刚性配准算法研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Transcranial Ultrasound Algorithms and Device for Rapid Stroke Determination by Paramedics
用于医护人员快速确定中风的经颅超声算法和设备
- 批准号:
10730722 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别: