hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception
基于 hiPSC 的多孔微电极阵列上的 DRG 组织模拟作为急性和慢性伤害感受的组织芯片模型
基本信息
- 批准号:10263436
- 负责人:
- 金额:$ 13.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-13 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAcuteAcute PainAdoptedAdultAfferent NeuronsAnalgesicsAnimal ModelAnimalsAstrocytesBehaviorBehavioral ModelBiological AssayCell LineCellsChemical StimulationChronicCollagenDataDevelopmentDiseaseDrug ScreeningElectric StimulationElectrophysiology (science)ExhibitsExpression ProfilingFDA approvedGap JunctionsGene ExpressionGlial Fibrillary Acidic ProteinHeterogeneityHumanIn VitroIncidenceInflammationInflammatoryInjuryInstitutionIon ChannelIon Channel GatingLeadLibrariesLigandsLinkMaintenanceMeasurementMeasuresMediatingMethodologyMethodsMicroelectrodesModelingMusNatureNeural Crest CellNeurogliaNeuronsNeuropathyNociceptionNociceptorsOpioidPainPain MeasurementPain managementParacrine CommunicationPathologicPathologyPathway interactionsPeripheralPharmaceutical PreparationsPharmacodynamicsPharmacologyPhasePhenotypePhysiologyPreclinical TestingPrincipal Component AnalysisProtein Translation PathwayPublishingResourcesRoleSeedsSignal TransductionSpinal GangliaStimulusSupporting CellTechnologyTestingTherapeuticTissue MicroarrayTissuesTranslational ActivationTranslationsbasebehavior testcell typechronic paincytokinedisabilityextracellularimmunoreactivityin vitro Modelin vivoinhibitor/antagonistinnovationmicrophysiology systemnerve injuryneuronal excitabilityneurotransmissionnon-cancer painnon-opioid analgesicnovel strategiespain modelpharmacodynamic biomarkerpreclinical developmentpreclinical efficacyreceptorresponsescreeningspared nervetherapeutic candidatethree-dimensional modelingtransmission processvoltage
项目摘要
Project summary/abstract:
Chronic pain afflicts up to one in five adults and is the most common cause of long-term disability in the
world. Opioids, which are commonly prescribed for non-cancer pain, are associated with a high incidence of
serious effects and abuse. Moreover, current in vivo and in vitro models used to study nociception and test
potential treatments are inadequate. Human-based, pathology-relevant models of nociception are urgently
needed to facilitate preclinical development of new non-opioid pain therapeutics. Therefore, we propose to
develop an innovative 3D model of acute and chronic nociception using hiPSC sensory neurons and satellite
glial cell surrogates (an hiPSC-based DRG tissue mimic) on multi-well MEAs.
In the UG3 phase, we will develop a tissue chip for modeling acute and chronic nociception based on 3D
hiPSC-based dorsal root ganglion (DRG) tissue mimics and a high-content, moderate-throughput microelectrode
array (MEA) platform. DRG tissue mimics will be comprised of hiPSC counterparts to constituent intraganglionic
DRG cell types embedded in a collagen matrix. We will then demonstrate stable spontaneous and noxious
stimulus-evoked behavior in response to thermal, chemical, and electrical stimulation challenges. Furthermore,
we aim to demonstrate the clear functional and phenotypic advantages of utilizing a 3D mixed-cell DRG tissue
mimic versus purely neuronal 2D or 3D models. More specifically, we aim to demonstrate sensitivity to
translational control via ligand receptor interactions between neuronal and non-neuronal cell types, thereby
demonstrating pathological relevance to a the ‘holy trinity’ of pain (nociceptive, inflammatory and neuropathic)
and our model’s capacity for testing fundamental hypotheses related to contributions of non-neuronal support
cells in chronic pain development and maintenance.
In the UH3 phase, we will demonstrate the powerful quantitative efficiency and preclinical efficacy of our
microphysiological system by detecting known ligand-based modulators of translational control and voltage-
gated ion channel antagonists in a sensitized model of chronic nociception. These two classes of drugs are
widely recognized as candidate compounds for reversing nociceptive plasticity and/or serving as peripheral
analgesics. Moreover, we will quantitatively define pharmacological hits based on widely accepted assay scoring
methodologies. Lastly, we will leverage the high-throughput nature or our tissue chip model to screen FDA-
approved, bioactive compounds, demonstrating the sensitivity and throughput of our high content assay, and
potentially identifying efficacy of candidate therapeutics obscured by less sophisticated methods of phenotypic
screening.
项目概要/摘要:
多达五分之一的成年人患有慢性疼痛,是导致长期残疾的最常见原因。
阿片类药物通常用于治疗非癌症疼痛,但与高发病率有关。
此外,目前的体内和体外模型用于研究伤害感受和测试。
基于人类的、病理相关的伤害感受模型尚不充分。
需要促进新的非阿片类疼痛疗法的临床前开发。
使用 hiPSC 感觉神经元和卫星开发急性和慢性伤害感受的创新 3D 模型
多孔 MEA 上的胶质细胞替代物(基于 hiPSC 的 DRG 组织模拟物)。
在UG3阶段,我们将开发一种基于3D的急性和慢性伤害感受建模组织芯片
基于 hiPSC 的背根神经节 (DRG) 组织模拟物和高含量、中等通量的微电极
DRG 组织模拟物阵列 (MEA) 平台将由 hiPSC 供体组成,以构成神经节内。
然后,我们将展示嵌入胶原基质中的 DRG 细胞类型的稳定自发性和有害性。
响应热、化学和电刺激挑战的刺激诱发行为。
我们的目标是展示利用 3D 混合细胞 DRG 组织的明显功能和表型优势
模拟与纯神经 2D 或 3D 模型更具体地说,我们的目标是展示对模型的敏感性。
通过神经元和非神经元细胞类型之间的配体受体相互作用进行翻译控制,从而
证明与疼痛“三位一体”(伤害性疼痛、炎症性疼痛和神经性疼痛)的病理相关性
以及我们的模型测试与非神经元支持贡献相关的基本假设的能力
细胞在慢性疼痛的发展和维持中。
在UH3阶段,我们将展示我们的强大的定量效率和临床前功效
通过检测已知的基于配体的平移控制和电压调节剂来观察微生理系统
慢性伤害感受敏化模型中的门控离子通道拮抗剂这两类药物是。
被广泛认为是逆转伤害感受可塑性和/或作为外周血管的候选化合物
此外,我们将根据广泛接受的测定评分来定量定义药理学效果。
最后,我们将利用我们的组织芯片模型的高通量特性来筛选 FDA-
经批准的生物活性化合物,展示了我们高含量测定的灵敏度和通量,以及
候选疗法的潜在功效被不太复杂的表型方法所掩盖
筛选。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryan James Black其他文献
Phenotypic Screening of Prospective Analgesics Among FDA‐Approved Compounds using an iPSC‐Based Model of Acute and Chronic Inflammatory Nociception
使用基于 iPSC 的急性和慢性炎症伤害感受模型对 FDA 批准的化合物中的前瞻性镇痛药进行表型筛选
- DOI:
10.1002/advs.202303724 - 发表时间:
2024-01-08 - 期刊:
- 影响因子:15.1
- 作者:
Bryan James Black;Rasha El Ghazal;Neal Lojek;Victoria Williams;Jai Singh Rajput;Jennifer M Lawson - 通讯作者:
Jennifer M Lawson
Biology and pathophysiology of symptomatic neuromas.
有症状的神经瘤的生物学和病理生理学。
- DOI:
10.1097/j.pain.0000000000003055 - 发表时间:
2023-10-17 - 期刊:
- 影响因子:7.4
- 作者:
Charles D. Hwang;Y. A. Hoftiezer;Floris V. Raasveld;Barbara Gomez;E.P.A. van der Heijden;Selwyn Jayakar;Bryan James Black;Benjamin R Johnston;B. Wainger;William Renthal;Clifford J. Woolf;K. Eberlin - 通讯作者:
K. Eberlin
Bryan James Black的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryan James Black', 18)}}的其他基金
hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception
基于 hiPSC 的多孔微电极阵列上的 DRG 组织模拟作为急性和慢性伤害感受的组织芯片模型
- 批准号:
10387137 - 财政年份:2021
- 资助金额:
$ 13.23万 - 项目类别:
hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception
基于 hiPSC 的多孔微电极阵列上的 DRG 组织模拟作为急性和慢性伤害感受的组织芯片模型
- 批准号:
10254878 - 财政年份:2020
- 资助金额:
$ 13.23万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
相似海外基金
CONVERGENT PROCESSING ACROSS VISUAL AND HAPTIC CIRCUITS FOR 3D SHAPE PERCEPTION
跨视觉和触觉电路的融合处理,实现 3D 形状感知
- 批准号:
10720137 - 财政年份:2023
- 资助金额:
$ 13.23万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 13.23万 - 项目类别:
Exploring the role of ATP1A3 mutations in sudden unexplained death in epilepsy
探索 ATP1A3 突变在癫痫不明原因猝死中的作用
- 批准号:
10688211 - 财政年份:2022
- 资助金额:
$ 13.23万 - 项目类别:
Exploring the role of ATP1A3 mutations in sudden unexplained death in epilepsy
探索 ATP1A3 突变在癫痫不明原因猝死中的作用
- 批准号:
10522820 - 财政年份:2022
- 资助金额:
$ 13.23万 - 项目类别:
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 13.23万 - 项目类别: