Controlling Esophageal Cancer: A Collaborative Modeling Approach

控制食管癌:协作建模方法

基本信息

  • 批准号:
    8969418
  • 负责人:
  • 金额:
    $ 118.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Controlling Esophageal Cancer: A Collaborative Modeling Approach. The ultimate goal of the proposed research project is to advance our understanding of esophageal cancer and the impact of cancer control interventions to diminish the burden of this disease. This will be accomplished through a collaborative and comparative modeling project. There are two main histologic types of esophageal cancer: adenocarcinoma (EAC) and Squamous Cell Carcinoma (ESCC). Although ESCC is more common globally, in the US and much of the western world, EAC is more common and of greater concern. Esophageal AdenoCarcinoma (EAC) has experienced a remarkable (more than 6-fold) increase in incidence over the past few decades, which is largely unexplained. To date, primary screening and prevention efforts have targeted patients with symptoms of gastroesophageal reflux disease (GERD) using endoscopy and biopsy to identify patients with Barrett's esophagus (BE), with BE patients targeted for endoscopic surveillance. There is no firm evidence indicating that this screening/surveillance strategy is effective, which is underscored by persistently poor survival rates while a large proportion of cancers continue to be diagnosed at late and invasive stages. With an estimated 40-60 million Americans with GERD and 3-12 million with BE, the management of patients who are at significantly increased risk of EAC has become an important public health issue. In addition to uncertain long-term benefits, current unproven strategies may subject patients to overtesting and overdiagnosis, negatively impacting patient quality of life while expending considerable medical resources. The research team's prior work includes comparative modeling of the natural history of EAC by three independent models providing a strong foundation upon which to perform analyses that assess and improve screening and prevention strategies: specifically, the evaluation of cutting-edge enhancements such as new screening technologies, prevention, genomic and other biomarkers, and clinical prediction tools. Precision risk stratification is the aim, with the broader goal to identify a caner control strategy that is effective while limiting overtesting and overtreatment, thereby reducing patient burden and improving healthcare efficiency. These modeling efforts will provide the personalized patient data necessary to construct a decision aid, which will minimize patient screening burden by aligning management choices with personal preferences for screening. Finally, although the initial focus of the project will be on EAC, ESCC is more common and widespread globally, particularly in parts of Asia such as China. The models will be extended to include an ESCC natural history component and assess ESCC screening in the US and China. The proposal will address the overarching goals of increasing our understanding of the natural history of esophageal cancer and determining the impact and of potential cancer control interventions with the ultimate goal of ameliorating cancer morbidity.
 描述(由申请人提供):控制食管癌:一种协作模型,是为了促进我们对癌症控制的理解,以减少与此相比的负担食管癌的类型)和鳞状细胞癌(ESCC)。迄今为止,主要的筛查和生产努力针对患者使用内窥镜检查和活检,以识别Barrett食管(BE)的患者进行内窥镜监测,没有任何牢固的监视策略。有效,生存率较差,很大一部分在后期和入侵阶段继续被诊断出来,估计有40-6亿美国人的GERD D 3-1200万BE,该患者的管理大大增加了EAC风险除了不确定的长期福利外,还成为一个重要的公共卫生问题,当前的无概括策略可能会遭受夸张和iA的态度,在经历大量的医疗资源的同时,会影响生活的高音。强大的基础,要唤起talesess筛查策略:具体来说,对新筛查技术,预防和生物标志物等尖端增强的评估。虽然限制了过度处理和精神,但这些建模工作将个性化帕特塔(Patieta)构建决策援助,这将通过使管理层与个人筛查的偏好保持一致,这将使患者负担在EAC上。 ,在亚洲的部分地区,例如中国的遗嘱。致病性癌症的最终目标。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chin Hur其他文献

Chin Hur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chin Hur', 18)}}的其他基金

Domain-Knowledge Informed Deep Learning for Early Detection of Pancreatic Cancer
基于领域知识的深度学习用于胰腺癌的早期检测
  • 批准号:
    10458067
  • 财政年份:
    2021
  • 资助金额:
    $ 118.69万
  • 项目类别:
Comparative modeling of gastric cancer disparities and prevention in the US and globally
美国和全球胃癌差异和预防的比较模型
  • 批准号:
    10330855
  • 财政年份:
    2021
  • 资助金额:
    $ 118.69万
  • 项目类别:
Optimal Colorectal Cancer Surveillance Strategy for Lynch Syndrome by Genotype
按基因型分类的林奇综合征最佳结直肠癌监测策略
  • 批准号:
    10458721
  • 财政年份:
    2021
  • 资助金额:
    $ 118.69万
  • 项目类别:
Optimal Colorectal Cancer Surveillance Strategy for Lynch Syndrome by Genotype
按基因型分类的林奇综合征最佳结直肠癌监测策略
  • 批准号:
    10298217
  • 财政年份:
    2021
  • 资助金额:
    $ 118.69万
  • 项目类别:
Optimal Colorectal Cancer Surveillance Strategy for Lynch Syndrome by Genotype
按基因型分类的林奇综合征最佳结直肠癌监测策略
  • 批准号:
    10674701
  • 财政年份:
    2021
  • 资助金额:
    $ 118.69万
  • 项目类别:
Comparative modeling of gastric cancer disparities and prevention in the US and globally
美国和全球胃癌差异和预防的比较模型
  • 批准号:
    10705668
  • 财政年份:
    2021
  • 资助金额:
    $ 118.69万
  • 项目类别:
Domain-Knowledge Informed Deep Learning for Early Detection of Pancreatic Cancer
基于领域知识的深度学习用于胰腺癌的早期检测
  • 批准号:
    10317236
  • 财政年份:
    2021
  • 资助金额:
    $ 118.69万
  • 项目类别:
A Personalized Approach to Targeted Esophageal Cancer Screening
针对性食管癌筛查的个性化方法
  • 批准号:
    10212990
  • 财政年份:
    2020
  • 资助金额:
    $ 118.69万
  • 项目类别:
A Personalized Approach to Targeted Esophageal Cancer Screening
针对性食管癌筛查的个性化方法
  • 批准号:
    10661535
  • 财政年份:
    2020
  • 资助金额:
    $ 118.69万
  • 项目类别:
A Personalized Approach to Targeted Esophageal Cancer Screening
针对性食管癌筛查的个性化方法
  • 批准号:
    10413908
  • 财政年份:
    2020
  • 资助金额:
    $ 118.69万
  • 项目类别:

相似国自然基金

胰腺癌-肝脏双重类器官芯片的构建及其在胰腺癌肝转移机制研究中的应用
  • 批准号:
    82302351
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HJURP调控PRDX1增加雄激素受体蛋白稳定性导致前列腺癌细胞对恩扎卢胺耐药的机制
  • 批准号:
    82373188
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
USP46通过去泛素化修饰RAP80促进同源重组修复的分子机制及其在三阴乳腺癌中的功能研究
  • 批准号:
    82373150
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
抑制MRPS21协同Bcl-xL抑制剂诱导前列腺癌细胞合成致死的分子机制研究
  • 批准号:
    82303033
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
C17ORF49/BPTF/BORIS通过增强子重编程促进ERα阳性乳腺癌内分泌治疗耐药的功能及分子机制研究
  • 批准号:
    82303138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing, Refining, and Testing a Mobile Health Question Prompt List in Gastroesophageal Reflux Disease
开发、完善和测试胃食管反流病移动健康问题提示表
  • 批准号:
    10739903
  • 财政年份:
    2023
  • 资助金额:
    $ 118.69万
  • 项目类别:
Characterizing treatment responses for common lung cancer (LC) subtypes in Latinos and Asians
描述拉丁裔和亚洲人常见肺癌 (LC) 亚型的治疗反应
  • 批准号:
    10733396
  • 财政年份:
    2023
  • 资助金额:
    $ 118.69万
  • 项目类别:
Precision Interception of Gastric Cancer Precursors Through Molecular and Cellular Risk Stratification
通过分子和细胞风险分层精准拦截胃癌前体
  • 批准号:
    10715761
  • 财政年份:
    2023
  • 资助金额:
    $ 118.69万
  • 项目类别:
Platform to develop targeted therapies for aggressive less common gynecological cancers
开发针对侵袭性不太常见妇科癌症的靶向疗法的平台
  • 批准号:
    10733237
  • 财政年份:
    2023
  • 资助金额:
    $ 118.69万
  • 项目类别:
Mechanisms and vulnerabilities of ERG-driven luminal fate in prostate cancer
前列腺癌中 ERG 驱动的管腔命运的机制和脆弱性
  • 批准号:
    10572836
  • 财政年份:
    2023
  • 资助金额:
    $ 118.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了