Domain-Knowledge Informed Deep Learning for Early Detection of Pancreatic Cancer
基于领域知识的深度学习用于胰腺癌的早期检测
基本信息
- 批准号:10317236
- 负责人:
- 金额:$ 17.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-28 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAlgorithmsArtificial IntelligenceAttentionCancer EtiologyCategoriesCessation of lifeCharacteristicsChronologyClinicalComplexDataData AnalyticsData SetDiagnosisEarly DiagnosisElectronic Health RecordGoalsGraphGroupingHealthcareHospitalsHumanImageIndividualKnowledgeLaboratoriesLearningLifeLiteratureMachine LearningMalignant NeoplasmsMalignant neoplasm of pancreasMeasurementMedicalMethodologyMethodsMiningModalityModelingMorbidity - disease rateNaturePancreatic Ductal AdenocarcinomaPatient CarePatientsPharmaceutical PreparationsPhysiciansPredictive FactorProceduresProtocols documentationProviderRecordsReportingResearchRisk FactorsSavingsSchemeSeriesSigns and SymptomsStatistical StudyStructureSurvival RateTechniquesTestingTextTimeTrainingVisitassociated symptombasecancer diagnosisclinical decision-makingdata formatdata qualitydeep learningdeep learning algorithmdemographicsdesigndirect applicationeffective therapyelectronic structurefeature extractionhealth dataimprovedinnovationknowledge basemortalitymultimodal datamultimodalityneural networknovelnovel strategiespancreatic ductal adenocarcinoma modelpredictive modelingprogramsrelating to nervous systemrisk predictionscreeningsuccess
项目摘要
PROJECT SUMMARY
The goal of this project is to leverage deep-learning algorithms on Electronic Health Records (EHRs) to
improve early detection of pancreatic ductal adenocarcinoma (PDAC), a malignancy with high mortality and
morbidity. Although numerous risk factors have been identified, PDAC is most often found in later stages when
effective treatments are not feasible or their survival benefit is limited. In this R21, we aim to develop novel
structured methodologies for systematically incorporating feature grouping strategy from expert domain
knowledge into the training procedure of deep-learning algorithms for improving PDAC diagnosis. The
overarching hypothesis for this study is that the groups of highly correlated variables will combine to form
superior and interpretable predictors compared to individual clinical variables (current proposal).
Furthermore, these new predictors represented by the group of related data will be useful for other
downstream tasks such as risk factor identification via causal discovery (future research).
The proposed research presents an innovative approach towards unifying human and artificial intelligence,
using explainable algorithms to build interpretable prediction models, in contrast to conventional deep-learning
algorithms which are non-traceable by humans due to their black-box nature.
An optimal strategy for creating composite (grouped) variables should maximize both predictive power as well
as human-interpretability. We will thus explore a variety of grouping strategies relying heavily on human-expert
knowledge (e.g. clinical workflows) as well as auto-correlation tests. An effective grouping strategy will allow
our prediction model to learn the relative importance of both individual measurements as well as interpretable
groups of measurements in predicting PDAC. Examples in the literature show that such grouped predictors
often have superior predictive power compared to their individual components, which can be attributed to the
mutual information shared within the group. Different types of explainable (attention) neural networks may also
be applied depending on the group characteristics to further improve interpretability as well as prediction
accuracy.
We believe that similar methodologies applied to predictive modeling in healthcare data have the potential to
fundamentally advance clinical decision making with improved model interpretability. The success of this
proposal will be leveraged in a larger ongoing project which aims to establish new causal relationships
between various risk factors associated with PDAC. This involves an advanced graph-based approach for
building interpretable models. Our direct application of causal discoveries in the future research will be a
program for collecting patient-generated health data (PGHD) for PDAC early diagnosis.
项目摘要
该项目的目的是利用电子健康记录(EHRS)的深入学习算法
改善胰腺导管腺癌(PDAC)的早期检测,这是一种高死亡率和高死亡率的恶性肿瘤
发病率。尽管已经确定了许多危险因素,但是当PDAC最常在以后的阶段中找到
有效治疗不可行,或者其生存益处受到限制。在R21中,我们旨在发展小说
系统地结合专家领域的特征分组策略的结构化方法
了解深度学习算法的训练程序,以改善PDAC诊断。这
这项研究的总体假设是,高度相关变量的组将结合起来形成
与单个临床变量相比,优越和可解释的预测因子(当前建议)。
此外,这些由相关数据组代表的这些新预测因素将对其他
下游任务,例如通过因果发现识别危险因素(未来研究)。
拟议的研究提出了一种统一人工智能的创新方法,
与常规深度学习相比,使用可解释的算法来构建可解释的预测模型
由于其黑盒性质而无法通过人类追踪的算法。
创建复合(分组)变量的最佳策略也应最大化预测能力
作为人的解剖性。因此,我们将探索各种依赖人类专家的分组策略
知识(例如临床工作流)以及自动相关测试。有效的分组策略将允许
我们学习单个测量和可解释的相对重要性的预测模型
预测PDAC中的测量组。文献中的示例表明,这种分组的预测指标
与其各个组件相比,通常具有优势的预测能力,这可以归因于
组中共享的共同信息。不同类型的解释(注意)神经网络也可能
根据小组特征应用以进一步提高可解释性和预测
准确性。
我们认为,用于医疗保健数据中的预测建模的类似方法有可能
从根本上讲,通过改进的模型可解释性提高临床决策。这个成功
提案将在一个较大的正在进行的项目中利用,该项目旨在建立新的因果关系
与PDAC相关的各种风险因素之间。这涉及一种基于图形的高级方法
构建可解释的模型。我们在未来的研究中直接应用因果发现将是一项
用于收集患者生成的健康数据(PGHD)的计划,用于PDAC早期诊断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chin Hur其他文献
Chin Hur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chin Hur', 18)}}的其他基金
Domain-Knowledge Informed Deep Learning for Early Detection of Pancreatic Cancer
基于领域知识的深度学习用于胰腺癌的早期检测
- 批准号:
10458067 - 财政年份:2021
- 资助金额:
$ 17.69万 - 项目类别:
Comparative modeling of gastric cancer disparities and prevention in the US and globally
美国和全球胃癌差异和预防的比较模型
- 批准号:
10330855 - 财政年份:2021
- 资助金额:
$ 17.69万 - 项目类别:
Optimal Colorectal Cancer Surveillance Strategy for Lynch Syndrome by Genotype
按基因型分类的林奇综合征最佳结直肠癌监测策略
- 批准号:
10458721 - 财政年份:2021
- 资助金额:
$ 17.69万 - 项目类别:
Optimal Colorectal Cancer Surveillance Strategy for Lynch Syndrome by Genotype
按基因型分类的林奇综合征最佳结直肠癌监测策略
- 批准号:
10298217 - 财政年份:2021
- 资助金额:
$ 17.69万 - 项目类别:
Optimal Colorectal Cancer Surveillance Strategy for Lynch Syndrome by Genotype
按基因型分类的林奇综合征最佳结直肠癌监测策略
- 批准号:
10674701 - 财政年份:2021
- 资助金额:
$ 17.69万 - 项目类别:
Comparative modeling of gastric cancer disparities and prevention in the US and globally
美国和全球胃癌差异和预防的比较模型
- 批准号:
10705668 - 财政年份:2021
- 资助金额:
$ 17.69万 - 项目类别:
A Personalized Approach to Targeted Esophageal Cancer Screening
针对性食管癌筛查的个性化方法
- 批准号:
10212990 - 财政年份:2020
- 资助金额:
$ 17.69万 - 项目类别:
A Personalized Approach to Targeted Esophageal Cancer Screening
针对性食管癌筛查的个性化方法
- 批准号:
10661535 - 财政年份:2020
- 资助金额:
$ 17.69万 - 项目类别:
A Personalized Approach to Targeted Esophageal Cancer Screening
针对性食管癌筛查的个性化方法
- 批准号:
10413908 - 财政年份:2020
- 资助金额:
$ 17.69万 - 项目类别:
Controlling Esophageal Cancer: A Collaborative Modeling Approach
控制食管癌:协作建模方法
- 批准号:
9753971 - 财政年份:2018
- 资助金额:
$ 17.69万 - 项目类别:
相似国自然基金
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于人工智能和多模态信息预测复杂下肢动脉病变术后不良事件的算法机制研究
- 批准号:82370499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向智能电网用户侧的智能优化调度和人工智能算法安全研究
- 批准号:62373297
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
人工智能算法嵌入街头官僚决策的行为效应及其认知触发机制研究
- 批准号:72304110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能算法辅助高通量纳米等离子芯片用于前列腺癌尿液外泌体多元标志物的检测
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Automatic, Opportunistic Surveillance of Hip Bone Fragility in X-ray Images
X 射线图像中髋骨脆性的自动、机会性监视
- 批准号:
10697573 - 财政年份:2023
- 资助金额:
$ 17.69万 - 项目类别:
Association of Phenotypes and Genotype with Treatment Response in Psoriatic Arthritis
表型和基因型与银屑病关节炎治疗反应的关联
- 批准号:
10723557 - 财政年份:2023
- 资助金额:
$ 17.69万 - 项目类别:
Early Identification of Childhood Cancer Survivors at High Risk for Late Onset Cardiomyopathy: An Artificial Intelligence Approach utilizing Electrocardiography
早期识别迟发性心肌病高风险儿童癌症幸存者:利用心电图的人工智能方法
- 批准号:
10457160 - 财政年份:2022
- 资助金额:
$ 17.69万 - 项目类别:
Early Identification of Childhood Cancer Survivors at High Risk for Late Onset Cardiomyopathy: An Artificial Intelligence Approach utilizing Electrocardiography
早期识别迟发性心肌病高风险儿童癌症幸存者:利用心电图的人工智能方法
- 批准号:
10610470 - 财政年份:2022
- 资助金额:
$ 17.69万 - 项目类别: