Early Identification of Childhood Cancer Survivors at High Risk for Late Onset Cardiomyopathy: An Artificial Intelligence Approach utilizing Electrocardiography
早期识别迟发性心肌病高风险儿童癌症幸存者:利用心电图的人工智能方法
基本信息
- 批准号:10610470
- 负责人:
- 金额:$ 48.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAdultAlgorithmsAnthracyclineArtificial IntelligenceCancer SurvivorshipCardiacCardiologyCardiomyopathiesCardiovascular systemCharacteristicsChestChildhoodClinicalCohort StudiesCommunitiesCoronary ArteriosclerosisDataDevelopmentDiagnosisDoseDropsEFRACEarly DiagnosisEarly identificationEchocardiographyElectrocardiogramEpidemiologyFunctional disorderFutureGoalsGuidelinesHealthHeart InjuriesHeart Valve DiseasesHeart failureInterventionLeadLeft Ventricular Ejection FractionLeft Ventricular RemodelingLifeMachine LearningMalignant Childhood NeoplasmMeasuresModalityModelingMorbidity - disease rateMyocardialMyocardial dysfunctionParticipantPatientsPediatric HospitalsPediatric OncologyPediatric Oncology GroupPerformanceQuality of lifeRadiationRecommendationResearchResearch PersonnelRiskSaint Jude Children&aposs Research HospitalShapesSpecificitySubgroupSupportive careSurvival RateSurvivorsTechnologyTestingTimeTreatment-Related CancerValidationVisitWorkartificial intelligence methodcancer typechemotherapychildhood cancer survivorcohortcostdeep learningdemographicsdigitalfeature extractionfeature selectionfollow-upgradient boostingheart functionheart imagingheart preservationhigh riskimprovednovelnovel strategiespredictive modelingpredictive toolspreservationpreventprimary outcomerisk predictionrisk stratificationscreeningscreening guidelinessecondary outcomesignal processingsmart watchtooltumor progression
项目摘要
Project Summary/Abstract
Due to improved treatment and supportive care, five-year survival rates for childhood cancer now exceed 85%.
However, patients treated with anthracycline chemotherapy or chest-directed radiation have a dose-related risk
for adverse cardiovascular sequelae, including cardiomyopathy, coronary artery disease and valvular heart
disease, with a negative impact on quality of life and overall survival. Earlier recognition and interventions to
manage cardiac morbidity among childhood cancer survivors (CCS) could provide opportunities to improve
quality of remaining life. To facilitate early detection of cardiomyopathy, the Children's Oncology Group's
guidelines recommend life-long screening of CCS with echocardiography (ECHO) every 2 to 5 years. While
offering an opportunity for early detection of myocardial dysfunction, screening guidelines do not identify
patients with preserved systolic function who may develop cardiomyopathy in the future. Our overarching
long-term goal is to develop a generalizable artificial intelligence (AI)-tool using ECG tracings that can identify
CCS at high risk for future cardiomyopathy. We have shown on a subset of St. Jude Lifetime Cohort (SJLIFE)
study data that CCS at high risk for cardiomyopathy withing 10 years can be predicted with high accuracy
(AUC of 0.87) via artificial intelligence (AI) using raw digital electrocardiography (ECG) data only. Our goal in
this project is to develop a robust (Aim 1), generalizable (Aim 2), and remotely applicable (Aim 3) AI-tool that
can identify CCS at cardiomyopathy risk from low-cost and highly-accessible ECG data. We will achieve our
goal by following three specific aims:
Aim 1. Develop an AI tool to predict risk of future cardiomyopathy among CCS: We will utilize data from
3,731 SJLIFE participants to refine and internally validate a novel AI-tool predicting CCS at high risk for
cardiomyopathy (defined as ejection fraction < 50% or >10% drop), in the subsequent 3, 5, and 10 years. We
will use signal processing and deep learning to generate features representing ECGs and use these features in
machine learning to predict cardiomyopathy.
Aim 2. Perform an external validation of the AI tool on a subgroup of the Amsterdam LATER Cohort.
We will externally validate our AI-tool on 343 CCS treated for childhood cancer at the Emma Children's
Hospital/Academic Medical Center in Netherland. We will assess the concordance of the AI-tool performance
on the LATER cohort vs hold out test cohort at SJLIFE.
Aim 3. Evaluate the feasibility of remote cardiomyopathy prediction via smartwatch. We will collect
ECGs on a subset of SJLIFE participants via a smartwatch during their routine exam and assess the.
concordance of risk predictions by AI-tool using smartwatch ECG vs clinical ECG.
Impact: Our results offer the potential to positively impact CCS health by 1) identifying those who may benefit
from more frequent or advanced cardiac imaging, and 2) guiding future studies in remote and real time
prediction of late-onset cardiomyopathy.
0
项目概要/摘要
由于治疗和支持性护理的改进,儿童癌症的五年生存率现已超过 85%。
然而,接受蒽环类化疗或胸部定向放疗的患者存在剂量相关的风险
用于不良心血管后遗症,包括心肌病、冠状动脉疾病和心脏瓣膜病
疾病,对生活质量和总体生存产生负面影响。及早认识和干预
管理儿童癌症幸存者(CCS)的心脏病发病率可以提供改善的机会
剩余生活质量。为了促进心肌病的早期发现,儿童肿瘤学组
指南建议每 2 至 5 年使用超声心动图 (ECHO) 进行一次 CCS 终生筛查。尽管
筛查指南提供了早期发现心肌功能障碍的机会,但未发现
收缩功能保留但将来可能患心肌病的患者。我们的首要任务
长期目标是开发一种通用人工智能(AI)工具,使用心电图追踪来识别
CCS 未来发生心肌病的风险很高。我们已经在 St. Jude 终身队列 (SJLIFE) 的一个子集上展示了
研究数据表明10年内心肌病高危CCS可高精度预测
(AUC 为 0.87)通过人工智能 (AI) 仅使用原始数字心电图 (ECG) 数据。我们的目标是
该项目旨在开发一个强大的(目标 1)、可推广的(目标 2)和远程适用的(目标 3)人工智能工具
可以通过低成本且易于获取的心电图数据来识别心肌病风险中的 CCS。我们将实现我们的
通过以下三个具体目标来实现目标:
目标 1. 开发人工智能工具来预测 CCS 未来心肌病的风险:我们将利用来自
3,731 名 SJLIFE 参与者完善并内部验证了一种新型人工智能工具,可预测高风险的 CCS
在随后的 3、5 和 10 年内发生心肌病(定义为射血分数 < 50% 或 >10% 下降)。我们
将使用信号处理和深度学习来生成表示心电图的特征,并将这些特征用于
机器学习来预测心肌病。
目标 2. 在阿姆斯特丹 LATER 队列的一个子组上对 AI 工具进行外部验证。
我们将在艾玛儿童医院对 343 名接受儿童癌症治疗的 CCS 进行外部验证我们的 AI 工具
荷兰的医院/学术医疗中心。我们将评估人工智能工具性能的一致性
在 SJLIFE 的 LATER 队列与 Holdout 测试队列中。
目标 3. 评估通过智能手表远程预测心肌病的可行性。我们将收集
在例行检查期间,通过智能手表对一部分 SJLIFE 参与者进行心电图检查并进行评估。
使用智能手表心电图与临床心电图的人工智能工具进行风险预测的一致性。
影响:我们的结果有可能通过以下方式对 CCS 健康产生积极影响:1) 确定哪些人可能受益
来自更频繁或更先进的心脏成像,2) 远程实时指导未来研究
迟发性心肌病的预测。
0
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oguz Akbilgic其他文献
Oguz Akbilgic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oguz Akbilgic', 18)}}的其他基金
ECG-AI Based Prediction and Phenotyping of Heart Failure with Preserved Ejection Fraction
基于 ECG-AI 的射血分数保留的心力衰竭预测和表型分析
- 批准号:
10717312 - 财政年份:2023
- 资助金额:
$ 48.77万 - 项目类别:
Deep learning of awake and sleep electrocardiography to identify atrial fibrillation risk in sleep apnea
深度学习清醒和睡眠心电图来识别睡眠呼吸暂停中的房颤风险
- 批准号:
10579141 - 财政年份:2023
- 资助金额:
$ 48.77万 - 项目类别:
Early Identification of Childhood Cancer Survivors at High Risk for Late Onset Cardiomyopathy: An Artificial Intelligence Approach utilizing Electrocardiography
早期识别迟发性心肌病高风险儿童癌症幸存者:利用心电图的人工智能方法
- 批准号:
10457160 - 财政年份:2022
- 资助金额:
$ 48.77万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 48.77万 - 项目类别:
Developing an autism-specific mortality risk index using data from Medicare-enrolled autistic older adults
使用参加医疗保险的自闭症老年人的数据制定特定于自闭症的死亡风险指数
- 批准号:
10716884 - 财政年份:2023
- 资助金额:
$ 48.77万 - 项目类别:
Hybrid Type 1 Effectiveness-Implementation Trial of a Proactive Smoking Cessation Electronic Visit for Scalable Delivery via Primary Care
主动戒烟电子就诊的混合 1 型有效性实施试验,通过初级保健进行可扩展交付
- 批准号:
10365698 - 财政年份:2022
- 资助金额:
$ 48.77万 - 项目类别:
Early Identification of Childhood Cancer Survivors at High Risk for Late Onset Cardiomyopathy: An Artificial Intelligence Approach utilizing Electrocardiography
早期识别迟发性心肌病高风险儿童癌症幸存者:利用心电图的人工智能方法
- 批准号:
10457160 - 财政年份:2022
- 资助金额:
$ 48.77万 - 项目类别: