Precision immunoprofiling to reveal diagnostic biomarkers of latent TB infection
精确免疫分析揭示潜伏结核感染的诊断生物标志物
基本信息
- 批准号:10247473
- 负责人:
- 金额:$ 74.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-05 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAmericanAntibiotic TherapyAntibioticsAntigensBioinformaticsBiological AssayBiological MarkersClinicalClinical TreatmentCollaborationsComplexCytokine Network PathwayDetectionDevelopmentDiagnosisDiagnosticDiseaseDisease ManagementEligibility DeterminationGenerationsGoalsGoldHealth PersonnelImmuneImmune responseImmunocompetentImmunologic MarkersImmunologic MemoryImmunologic MonitoringIndividualInfectionInflammatoryInformaticsInterferonsInternationalLocationMachine LearningMeasurementMeasuresModelingPatientsPeripheralPeripheral Blood Mononuclear CellPlasmaPopulationPredictive ValuePrevention strategyRegimenResidual stateRiskSamplingScheduleSiliconSpecificityStratificationTechnologyTestingTherapeutic InterventionTranslationsTuberculin TestTuberculosisWhole Bloodantigen challengebasebioinformatics toolbiomarker signatureclinical Diagnosisclinical practicecytokinedata streamsdiagnostic accuracydiagnostic biomarkerfeature selectionhigh riskimmune functionimmunoregulationimprovedindividual variationlatent infectionmachine learning algorithmmodel developmentmonocytemortalitynovel diagnosticsnovel strategiespatient stratificationpersonalized approachpersonalized diagnosticsphotonicsprecision medicinepredictive markerpredictive modelingpreventprognosticprospectiveresponsescreeningside effecttargeted treatmenttooltreatment strategytuberculosis treatment
项目摘要
PROJECT SUMMARY
Tuberculosis (TB) is among the leading causes of mortality worldwide with an estimated 2 billion individuals
currently infected. Latent tuberculosis infection (LTBI) is the most common form of TB infection affecting 13
million Americans. While many with LTBI remain asymptomatic, an estimated 10% of immunocompetent patients
with LTBI will reactivate to active TB, and will become infectious. LTBI is treatable with a prolonged antibiotic
treatment; however, potential side effects motivate the development of new diagnostic approaches that can
identify with high specificity patients at the highest risk of reactivation, for who therapy would be most beneficial.
The tuberculin skin test (TST) and interferon-γ release assays (IGRAs) are commonly used for TB and LTBI
screening. Both tests provide good measures of TB exposure; however, neither is effective at diagnosing LTBI
(positive predictive values <5%). Moreover, neither provide any prognostic stratification based upon reactivation
risk. Both the TST and IGRAs probe immunological memory to TB-related antigen challenges and we
hypothesize that a more nuanced and personalized approach to monitoring immune responses to both TB-
specific and non-specific antigens might reveal new approaches to LTBI diagnosis and patient stratification.
Enabling a new, individualized approach to LTBI diagnostics, we propose to combine high throughput,
multiplexed inflammatory biomarker detection strategies and powerful bioinformatics tools that allow for the
identification of previously obscured multi-marker diagnostic signatures of LTBI status and reactivation risk.
Silicon photonic microring resonators are an enabling technology for biomarker analysis due to their intrinsic
scalability and multiplexing capabilities. Applied to the detection of cytokine panels, this technology supports the
rapid immune profiling of individual samples under both TB-specific and non-specific antigen stimulation
conditions. Machine learning algorithms will be utilized to analyze the resulting dense data streams to facilitate
selection of key diagnostic signatures forming the basis for predictive model development and deployment. This
powerful analytical combination is supplemented by deep expertise in clinical diagnosis and treatment of TB and
LTBI, and an enabling collaboration and connection to subjects from an international location with high TB burden
and exposure in a healthcare worker population subjected to regularly-scheduled and repeated LTBI screening.
The resulting diagnostic workflow and machine learning feature selection approaches will reveal multiplexed
biomarker signatures that have strong positive predictive correlation with LTBI status (+ or -). This approach will also
further stratify LTBI+ subjects on the basis of reactivation potential, thus providing a fundamentally new approach to
identifying subjects that are most likely to benefit from therapeutic intervention. The end result of this project will be a
new precision medicine-based diagnostic strategy that is vastly superior to the current state-of-the-art and offers the
potential to transform current clinical practice.
项目概要
结核病 (TB) 是全球导致死亡的主要原因之一,估计有 20 亿人患有结核病
目前已感染潜伏性结核感染 (LTBI),这是最常见的结核感染形式,影响 13 人。
尽管许多 LTBI 患者仍无症状,但估计有 10% 的免疫功能正常的患者。
患有 LTBI 的患者会重新激活为活动性结核病,并且会变得具有传染性,可以用长期抗生素治疗。
然而,潜在的副作用促使人们开发新的诊断方法
识别出重新激活风险最高的高特异性患者,对他们来说治疗最有益。
结核菌素皮试 (TST) 和干扰素 γ 释放试验 (IGRA) 通常用于检测 TB 和 LTBI
这两种测试都可以很好地衡量结核病暴露情况;然而,这两种测试都不能有效诊断 LTBI。
(阳性预测值<5%)此外,两者都没有提供基于重新激活的任何预后分层。
TST 和 IGRA 都探测结核病相关抗原挑战的免疫记忆,我们
追求一种更细致和个性化的方法来监测对结核病和结核病的免疫反应
特异性和非特异性抗原可能揭示 LTBI 诊断和患者分层的新方法。
我们建议将高通量、
多重炎症生物标志物检测策略和强大的生物信息学工具,允许
识别先前模糊的 LTBI 状态和再激活风险的多标志物诊断特征。
硅光子微环谐振器由于其固有的特性而成为生物标志物分析的支持技术
该技术应用于细胞因子组的检测,支持可扩展性和多重功能。
在结核病特异性和非特异性抗原刺激下对单个样本进行快速免疫分析
机器学习算法将用于分析产生的密集数据流,以促进。
选择构成预测模型开发和部署基础的关键诊断特征。
强大的分析组合辅以结核病临床诊断和治疗方面的深厚专业知识
LTBI,以及与来自结核病高负担的国际地点的受试者进行有利的合作和联系
定期和重复进行 LTBI 筛查的医护人员群体中的暴露情况。
由此产生的诊断工作流程和机器学习特征选择方法将揭示多路复用
与 LTBI 状态(+ 或 -)具有强正预测相关性的生物标志物特征也将采用这种方法。
根据再激活潜力进一步对 LTBI+ 受试者进行分层,从而提供了一种全新的方法
确定最有可能从治疗干预中受益的受试者。该项目的最终结果将是
新的基于精准医学的诊断策略,远远优于当前最先进的技术,并提供
改变当前临床实践的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan C Bailey其他文献
CellMag-CARWash: A High Throughput Droplet Microfluidic Device for Live Cell Isolation and Single Cell Applications.
CellMag-CARWash:一种用于活细胞分离和单细胞应用的高通量液滴微流体装置。
- DOI:
10.1002/adbi.202400066 - 发表时间:
2024-05-13 - 期刊:
- 影响因子:3.7
- 作者:
Brittany T Rupp;Claire D Cook;Emma A Purcell;Matei Pop;Abigail Radomski;N. Mesyngier;Ryan C Bailey;S. Nagrath - 通讯作者:
S. Nagrath
Ryan C Bailey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan C Bailey', 18)}}的其他基金
Precision immunoprofiling to reveal diagnostic biomarkers of latent TB infection
精确免疫分析揭示潜伏结核感染的诊断生物标志物
- 批准号:
10471266 - 财政年份:2019
- 资助金额:
$ 74.65万 - 项目类别:
Precision immunoprofiling to reveal diagnostic biomarkers of latent TB infection
精确免疫分析揭示潜伏结核感染的诊断生物标志物
- 批准号:
10006790 - 财政年份:2019
- 资助金额:
$ 74.65万 - 项目类别:
Droplet Microfluidic Platform for Ultralow Input Epigenetics
用于超低输入表观遗传学的液滴微流控平台
- 批准号:
9015419 - 财政年份:2015
- 资助金额:
$ 74.65万 - 项目类别:
Multiplexed Platform to Probe Interactions at the Model Cell Membrane Interface
用于探测模型细胞膜界面相互作用的多重平台
- 批准号:
9316049 - 财政年份:2014
- 资助金额:
$ 74.65万 - 项目类别:
Multiplexed Platform to Probe Interactions at the Model Cell Membrane Interface
用于探测模型细胞膜界面相互作用的多重平台
- 批准号:
8674700 - 财政年份:2014
- 资助金额:
$ 74.65万 - 项目类别:
Multiplexed Platform to Probe Interactions at the Model Cell Membrane Interface
用于探测模型细胞膜界面相互作用的多重平台
- 批准号:
8841783 - 财政年份:2014
- 资助金额:
$ 74.65万 - 项目类别:
Multiplexed Platform to Probe Interactions at the Model Cell Membrane Interface
用于探测模型细胞膜界面相互作用的多重平台
- 批准号:
9058562 - 财政年份:2014
- 资助金额:
$ 74.65万 - 项目类别:
Meso-plex miRNA and protein profiling for cancer diagnostics using chip-integrate
使用芯片集成进行癌症诊断的中观复合体 miRNA 和蛋白质分析
- 批准号:
8900786 - 财政年份:2013
- 资助金额:
$ 74.65万 - 项目类别:
Meso-plex miRNA and protein profiling for cancer diagnostics using chip-integrate
使用芯片集成进行癌症诊断的中观复合体 miRNA 和蛋白质分析
- 批准号:
8547294 - 财政年份:2013
- 资助金额:
$ 74.65万 - 项目类别:
Meso-plex miRNA and protein profiling for cancer diagnostics using chip-integrate
使用芯片集成进行癌症诊断的中观复合体 miRNA 和蛋白质分析
- 批准号:
8722505 - 财政年份:2013
- 资助金额:
$ 74.65万 - 项目类别:
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于任意精度计算架构的量子信息处理算法硬件加速技术研究
- 批准号:62304037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于物理信息神经网络的雷达回波资料反演蒸发波导算法研究
- 批准号:42305048
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Assessing Racial Bias in Pulmonary Medicine from the Interpretation of Pulmonary Function Tests
从肺功能测试的解释评估肺医学的种族偏见
- 批准号:
10677310 - 财政年份:2023
- 资助金额:
$ 74.65万 - 项目类别:
Bayesian approaches to identify persons with osteoarthritis in electronic health records and administrative health data in the absence of a perfect reference standard
在缺乏完美参考标准的情况下,贝叶斯方法在电子健康记录和管理健康数据中识别骨关节炎患者
- 批准号:
10665905 - 财政年份:2023
- 资助金额:
$ 74.65万 - 项目类别:
Noninvasive prediction of skin precancer severity using in vivo cellular imaging and deep learning algorithms.
使用体内细胞成像和深度学习算法无创预测皮肤癌前病变的严重程度。
- 批准号:
10761578 - 财政年份:2023
- 资助金额:
$ 74.65万 - 项目类别:
ARISE (Achieving Routine Intervention and Screening for Emotional health)
ARISE(实现情绪健康的常规干预和筛查)
- 批准号:
10655877 - 财政年份:2023
- 资助金额:
$ 74.65万 - 项目类别:
Minimally-invasive technology for personalized nutritional monitoring
用于个性化营养监测的微创技术
- 批准号:
10693521 - 财政年份:2023
- 资助金额:
$ 74.65万 - 项目类别: