Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形状变化的分子机制
基本信息
- 批准号:8739663
- 负责人:
- 金额:$ 28.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-21 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingActinsActomyosinAdverse effectsAneuploidyAnimal ModelAntineoplastic AgentsApoptosisBehaviorBiological AssayBiological ModelsBiomechanicsBiophysical ProcessBundlingCaenorhabditis elegansCell Cycle ProteinsCell ShapeCell divisionCell membraneCellsChimeric ProteinsClinicCollaborationsComplexComputer SimulationCoupledCytokinesisCytoskeletal FilamentsCytoskeletonDataDevelopmentDrug TargetingEventF-ActinFailureFeedbackFilamentGastrointestinal tract structureGeometryGoalsHuman bodyImage AnalysisInterphase CellKineticsLaboratoriesLifeMalignant NeoplasmsMammalsMeasuresMechanicsMembraneMethodsMitoticModelingMolecularMothersMyosin ATPaseNatureOrganellesPathologyPersonsPharmaceutical PreparationsPhylogenyPositioning AttributeProcessProteinsQuantitative MicroscopyRegulationRoleShapesSkinSlideStructural ProteinTetraploidyTimeTissuesUncertaintyUnited States National Institutes of HealthWorkbasecancer cellconstrictiondaughter cellinnovationinsightinterdisciplinary approachnovelprotein functionsingle moleculesuccesstumorzygote
项目摘要
Cytokinesis, the physical division of one cell into two, is accomplished by a transient
organelle called the contractile ring. The PI is focused on the molecular and biophysical
mechanisms of contractile ring function. Ongoing work in the PI's laboratory has yielded an
explanation of asymmetric (non-concentric) ring closure, which is seen throughout metazoa. To
explain this asymmetry, a biomechanical feedback loop was proposed, among cytoskeletal
filament alignment, filament sliding, and membrane curvature. An in silico model based on this
feedback can recapitulate ring closure asymmetry, as well as the kinetics of closure initiation
and duration in the C. elegans zygote, the primary animal model for this work.
To expand and strengthen this model, the proposed work aims to define the molecular and
physical mechanisms of each component of the feedback loop. Specifically, the conserved
proteins that contribute to alignment of cytoskeletal filaments with each other and with the
membrane will be defined. The existence of myosin in the form of bipolar minifilaments in the
contractile ring will be defined. Last, the shape of the cell throughout cytokinesis will be
described and correlated with local protein enrichment and organization.
The proposal centers on the use of three dimensional live-cell (time-lapse) microscopy and
quantitative image analysis. Several novel quantitative assays for contractile ring assembly,
organization and function will be used. These include ways to measure F-actin alignment,
kinetics and position of ring closure throughout cytokinesis, the number of molecules in
macromolecular cortical complexes, and the three-dimensional shape of the cell during the
course of division. The C. elegans zygote serves as an ideal model system for these studies
due to its reproducible size, shape, and the kinetics of cell division events, the ease of thorough
depletion of essential proteins, the ability to examine the first cell division attempted following
protein depletion, and the availability of strains stably expressing fluorescent fusion proteins that
serve as markers for various subcellular components and compartments. Importantly, cell cycle
regulatory and structural proteins are conserved among C. elegans and mammals.
The long-term goal of this work is to aid the development of anti-cancer chemotherapeutics
that block cytokinesis. Targeting proteins that act specifically in the contractile ring should avoid
the side effects on non-dividing cells of many popular drugs. In addition, because currently used
anti-mitotics also have limited success against some tumor types, development of cytokinesis
drugs will be a welcome expansion and diversification of our arsenal against cancers.
细胞分裂,即一个细胞一分为二的物理分裂,是通过短暂的过程完成的
细胞器称为收缩环。 PI 专注于分子和生物物理
收缩环功能的机制。 PI 实验室正在进行的工作已经取得了成果
对不对称(非同心)环闭合的解释,这在整个后生动物中都可见。到
为了解释这种不对称性,提出了细胞骨架之间的生物力学反馈回路
细丝排列、细丝滑动和膜曲率。基于此的计算机模型
反馈可以概括环闭合不对称性以及闭合启动的动力学
以及线虫受精卵(这项工作的主要动物模型)中的持续时间。
为了扩展和加强这个模型,拟议的工作旨在定义分子和
反馈环路每个组件的物理机制。具体来说,保守的
有助于细胞骨架丝彼此对齐以及与细胞骨架丝对齐的蛋白质
膜将被定义。肌球蛋白以双极微丝的形式存在
将定义收缩环。最后,整个胞质分裂过程中细胞的形状将是
描述并与局部蛋白质富集和组织相关。
该提案的重点是使用三维活细胞(延时)显微镜和
定量图像分析。用于收缩环组装的几种新颖的定量测定,
将使用组织和功能。其中包括测量 F-肌动蛋白排列的方法,
整个胞质分裂过程中闭环的动力学和位置,分子数量
大分子皮质复合物以及细胞在运动过程中的三维形状
划分的过程。线虫受精卵是这些研究的理想模型系统
由于其可重复的尺寸、形状和细胞分裂事件的动力学,易于彻底
必需蛋白质的耗尽,检查第一次细胞分裂尝试的能力
蛋白质耗尽,以及稳定表达荧光融合蛋白的菌株的可用性
作为各种亚细胞成分和区室的标记。重要的是细胞周期
调节蛋白和结构蛋白在秀丽隐杆线虫和哺乳动物中是保守的。
这项工作的长期目标是帮助抗癌化疗药物的开发
阻断胞质分裂。针对在收缩环中特异性作用的蛋白质应避免
许多流行药物对非分裂细胞的副作用。另外,由于目前使用
抗有丝分裂药物对某些肿瘤类型、胞质分裂的发展也有有限的成功
药物将是我们对抗癌症的武器库的一个值得欢迎的扩展和多样化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Shaub Maddox其他文献
Amy Shaub Maddox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Shaub Maddox', 18)}}的其他基金
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10748207 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10330865 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10544504 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10582156 - 财政年份:2022
- 资助金额:
$ 28.07万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形状变化的分子机制
- 批准号:
8693096 - 财政年份:2013
- 资助金额:
$ 28.07万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形状变化的分子机制
- 批准号:
8549132 - 财政年份:2012
- 资助金额:
$ 28.07万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形态变化的分子机制
- 批准号:
9132813 - 财政年份:2012
- 资助金额:
$ 28.07万 - 项目类别:
Determining the working unit of myosin in the cytokinetic ring
确定细胞因子环中肌球蛋白的工作单位
- 批准号:
9189173 - 财政年份:2012
- 资助金额:
$ 28.07万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形状变化的分子机制
- 批准号:
8348652 - 财政年份:2012
- 资助金额:
$ 28.07万 - 项目类别:
Super-resolution of the Mechanisms of Cell Shape Change in Cytokinesis - the Zeiss LSM800/Airyscan
细胞分裂过程中细胞形状变化机制的超分辨率 - Zeiss LSM800/Airyscan
- 批准号:
9027120 - 财政年份:2012
- 资助金额:
$ 28.07万 - 项目类别:
相似国自然基金
肌动蛋白成核促进因子SHRC的结构和分子机制的研究
- 批准号:32301034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
染色质重塑因子肌动蛋白样6A在视网膜变性中的作用机制及干预研究
- 批准号:82371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
肌动蛋白结合蛋白Xirp2介导基质刚度诱导心肌细胞肥大的力学生物学机制
- 批准号:12372314
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
肌动蛋白结合蛋白ANLN在胆汁淤积性肝损伤后肝再生过程中的作用及机制研究
- 批准号:82370648
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
WDR1介导的肌动蛋白解聚动态平衡在小脑浦肯野细胞衰老性焦亡中的作用研究
- 批准号:32371053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Integrins as regulators of vascular contractility in aged resistance arteries
整合素作为老化阻力动脉血管收缩力的调节剂
- 批准号:
9975078 - 财政年份:2019
- 资助金额:
$ 28.07万 - 项目类别:
Integrins as regulators of vascular contractility in aged resistance arteries
整合素作为老化阻力动脉血管收缩力的调节剂
- 批准号:
9809223 - 财政年份:2019
- 资助金额:
$ 28.07万 - 项目类别:
The processes mediating capsid transport during HCMV nuclear egress
HCMV 核排出过程中介导衣壳运输的过程
- 批准号:
9068655 - 财政年份:2015
- 资助金额:
$ 28.07万 - 项目类别:
Novel Mechanism of Breast Cancer Invasion Prevention by Estrogen Receptor
雌激素受体预防乳腺癌侵袭的新机制
- 批准号:
8942894 - 财政年份:2015
- 资助金额:
$ 28.07万 - 项目类别:
The processes mediating capsid transport during HCMV nuclear egress
HCMV 核排出过程中介导衣壳运输的过程
- 批准号:
8979939 - 财政年份:2015
- 资助金额:
$ 28.07万 - 项目类别: