Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
基本信息
- 批准号:10582156
- 负责人:
- 金额:$ 24.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:ActomyosinAnaphaseAnimalsAntineoplastic AgentsBehaviorBindingBiochemicalBiophysicsBlood CellsCell CycleCell ShapeCell divisionCell membraneCellsCellular biologyChromatinCollectionContractsCoupledCrosslinkerCuesCytokinesisCytoskeletal ModelingCytoskeletonDevelopmentDiseaseDrug TargetingEnsureF-ActinFamilyFeedbackFiberFilamentGastrointestinal tract structureGenerationsGenomeGenome StabilityGrainHeterogeneityLeadLengthMalignant NeoplasmsMechanicsMeiosisMethodsMicrofilamentsMicroscopeMitoticModelingMyosin Type IINeutropeniaOrganismPatternPersonsRegulationResearchRoleShapesSignal TransductionSkinSumTimeTissuesWorkanillinbasecancer cellcrosslinkdaughter celldepolymerizationfallsin vivoinnovationmathematical modelmembrane polaritymillisecondnanoscalenon-muscle myosinparticleprogramsrecruitspatiotemporaltheoriestumorzygote
项目摘要
Project Summary
Cytokinesis is the physical division of one cell into two. This final step of the mitotic or meiotic cell cycle
partitions the duplicated and segregated genome into topologically distinct daughter cells, and thus ensures
genome stability. Cytokinesis is essential for development of the fertilized egg into a multicellular organism, for
the replenishment of tissues to compensate for wear and tear, and to avoid diseases of proliferation including
cancer and some neutropenias (blood cell disorders). For over a century, people have marveled through the
microscope at dividing animal cells, but major questions about the mechanisms of cytokinesis remain. Many of
these questions fall under the three Themes of our research program: 1) the cytoskeletal rearrangements that
drive contractility, 2) the role of feedback loops in cytokinetic regulation, and 3) modeling the mesoscale.
In animal cytokinesis, the cell changes shape as a furrow forms at the cell equator, the region between
the two masses of segregated chromatin, as defined by spatio-temporal cues from the anaphase spindle. These
cues lead to local activation of RhoA at the plasma membrane. RhoA elicits non-muscle myosin II (NMMII)
filament assembly and activity, the generation of long actin filaments (F-actin) by formins, and the cortical
recruitment of crosslinkers including anillin and septins. In sum, a circumferential band of cortical actomyosin
cytoskeleton assembles and contracts via rearrangement of these cytoskeletal components. F-actin is slid,
bundled, crosslinked and coupled to the plasma membrane, polarity sorted, bent, broken and depolymerized.
The biophysics of many nano-scale binding partnerships are well studied, but often with sparse collections and
without confinement. Since the relative contributions of the many activities listed above to in vivo network
dynamics are unknown, our first theme is to define the cytoskeletal remodeling that underlies contractility.
After spindle cues pattern the cell equator, both biochemical and mechanical positive feedback boosts
these signals. Concurrently, global and localized inhibition via negative feedback limits RhoA activity. Our
unpublished observations of contractile oscillations suggest that multiple negative feedback loops coexist. The
second theme of our work is the role of feedback loops in cytokinetic regulation.
To develop a conceptual model of cytoskeletal rearrangements in cell division, one may imagine the
nanoscale molecules and fibers and their millisecond behaviors literally woven into a dynamic material. Like
biophysics and cell biology, respectively, mathematical modeling also describes cytoskeletal rearrangements at
these two ends of the time- and length scales, via distinct approaches: particle-based modeling (nano- or micro-
scale), or continuum mechanics theory (macro-scale). Since both families of approaches have limited ability to
coarse grain the mesoscale spatial and temporal heterogeneities of the cytokinetic ring components’ activity
states, behaviors, abundances, and combinations, we are working to understand cytokinetic cytoskeletal
rearrangements and integrated regulation, by innovating methods to model the mesoscale (theme three).
项目摘要
细胞因子是一个细胞分为两个细胞的物理分裂。有丝分裂或减数分裂细胞周期的最后一步
将重复的基因组和隔离的基因组划分为拓扑不同的子细胞,从而确保
基因组稳定性。细胞因子对于将受精鸡蛋发育到多细胞生物中至关重要,因为
补充组织以补偿磨损的磨损,并避免
癌症和某些中性减少症(血细胞疾病)。一个多世纪以来,人们惊叹于
显微镜分裂动物细胞,但有关细胞因子机制的主要问题仍然存在。许多
这些问题属于我们研究计划的三个主题:1)细胞骨架重排
驱动收缩力,2)反馈回路在细胞动力学调节中的作用,以及3)对中尺度进行建模。
在动物的细胞因子中,细胞随着细胞等效器形成沟的形状变化
由后期纺锤体的时空提示定义的两个隔离染色质质量。这些
提示导致质膜上RhoA的局部激活。 Rhoa引起非肌肉肌球蛋白II(NMMII)
细丝组件和活动,形成长肌动蛋白丝(F-肌动蛋白)的产生,皮质产生
招募包括Anillin和Septins在内的交联器。总之,皮质肌动蛋白的圆周带
通过重新排列这些细胞骨架成分的细胞骨架组件和收缩。 F-肌动蛋白是滑动,
捆绑,交联并耦合到质膜,极性分类,弯曲,破碎和解聚。
许多纳米级绑定伙伴关系的生物物理学都很好地研究了,但通常具有稀疏的收藏和
没有监禁。由于上述许多活动对体内网络的相对贡献
动态是未知的,我们的第一个主题是定义构成收缩力的细胞骨架重塑。
主轴提示模式后,细胞平等,生化和机械阳性反馈靴
这些信号。同时,通过负反馈限制了全球和局部抑制作用。我们的
未发表的收缩振荡观察结果表明,多个负面反馈循环并存。这
我们工作的第二个主题是反馈循环在细胞动力学调节中的作用。
为了开发细胞分裂中细胞骨架重排的概念模型,人们可能会想象
纳米级分子和纤维及其毫秒行为实际上编织成动态材料。喜欢
生物物理学和细胞生物学分别是数学建模还描述了细胞骨架重排
时间和长度尺度的这两个末端,通过不同的方法:基于粒子的建模(纳米或微型 -
比例尺)或连续力学理论(宏观尺度)。由于两个方法家族的能力有限
粗粒细胞力学环成分活性的中尺度空间和临时异质性
状态,行为,抽象和组合,我们正在努力理解细胞力学细胞骨架
通过创新方法对中尺度建模(主题三)来重新排列和集成调节。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Shaub Maddox其他文献
Amy Shaub Maddox的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Shaub Maddox', 18)}}的其他基金
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10748207 - 财政年份:2022
- 资助金额:
$ 24.97万 - 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10330865 - 财政年份:2022
- 资助金额:
$ 24.97万 - 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10544504 - 财政年份:2022
- 资助金额:
$ 24.97万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形状变化的分子机制
- 批准号:
8693096 - 财政年份:2013
- 资助金额:
$ 24.97万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形状变化的分子机制
- 批准号:
8549132 - 财政年份:2012
- 资助金额:
$ 24.97万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形态变化的分子机制
- 批准号:
9132813 - 财政年份:2012
- 资助金额:
$ 24.97万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形状变化的分子机制
- 批准号:
8739663 - 财政年份:2012
- 资助金额:
$ 24.97万 - 项目类别:
Determining the working unit of myosin in the cytokinetic ring
确定细胞因子环中肌球蛋白的工作单位
- 批准号:
9189173 - 财政年份:2012
- 资助金额:
$ 24.97万 - 项目类别:
Molecular mechanisms of cell shape change in cytokinesis
胞质分裂过程中细胞形状变化的分子机制
- 批准号:
8348652 - 财政年份:2012
- 资助金额:
$ 24.97万 - 项目类别:
Super-resolution of the Mechanisms of Cell Shape Change in Cytokinesis - the Zeiss LSM800/Airyscan
细胞分裂过程中细胞形状变化机制的超分辨率 - Zeiss LSM800/Airyscan
- 批准号:
9027120 - 财政年份:2012
- 资助金额:
$ 24.97万 - 项目类别:
相似国自然基金
心肌梗死修复后期TGF-β2通过YAP/TAZ下调LYVE-1表达引起免疫细胞经淋巴管清除障碍的作用与机制研究
- 批准号:82370259
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
城镇化后期县域城乡融合发展机理与模式
- 批准号:42371197
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
儿童早期气质对后期社会性发展的影响:人际掌控感的作用机制
- 批准号:32371108
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
南海西北部陆缘裂后期岩浆侵入体的时空发育特征、地层响应及其构造意义研究
- 批准号:42376070
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
RP1调控大豆开花后期的分子机制解析
- 批准号:32372112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Dissecting the role of Aurora A kinase in patterning the cell cortex during cytokinesis.
剖析 Aurora A 激酶在胞质分裂过程中细胞皮质模式化中的作用。
- 批准号:
10634513 - 财政年份:2022
- 资助金额:
$ 24.97万 - 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10748207 - 财政年份:2022
- 资助金额:
$ 24.97万 - 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10330865 - 财政年份:2022
- 资助金额:
$ 24.97万 - 项目类别:
Mechanisms of cell shape change in cytokinesis
胞质分裂中细胞形状变化的机制
- 批准号:
10544504 - 财政年份:2022
- 资助金额:
$ 24.97万 - 项目类别:
Dissecting the role of Aurora A kinase in patterning the cell cortex during cytokinesis.
剖析 Aurora A 激酶在胞质分裂过程中细胞皮质模式化中的作用。
- 批准号:
10387229 - 财政年份:2022
- 资助金额:
$ 24.97万 - 项目类别: