Spiral tube assembly for countercurrent chromatography
用于逆流色谱的螺旋管组件
基本信息
- 批准号:8149516
- 负责人:
- 金额:$ 3.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Theory
Mathematical analysis of intermittent dual countercurrent chromatography has been proposed as follows:
1) General Model
Retention time of the solute peak for intermittent dual CCC is mathematically analyzed. The method elutes each phase alternately through the opposite ends of the separation column at a given interval and flow rate while the sample solution is charged at the middle portion of the column. At the hydrodynamic equilibrium state established in each elution mode, the separation channel with a cross sectional area Ac is divided into the area occupied by the lower phase, AL, and the upper phase, AU. Here we assume that the two phases are uniformly distributed at a given volume ratio throughout the channel. The lower phase is introduced from the left terminal at a flow rate of FL ml/min and the upper phase from the right terminal at a flow rate of FU ml/min intermittently at given intervals, ti, L and ti, U, respectively. Then, the analysis of the solute peak motion in the channel is divided into two parts, i.e., for the forward (from left to right) elution and the backward (right to left) elution as follows:
For lower phase elution, the lower mobile phase is introduced from the left side of the channel at FLml/min flows through the channel at a linear velocity of uL cm/min,
uL= (FL/AC)(AU,L+AL,L)/AL,L = (FL/AC)(BL+1) (1)
where BL = AU,L/AL,L (volume ratio of two phases when lower phase mobile). Then the solute in the lower phase moves forward through the channel at a rate of uX,L cm/min according to its partition coefficient, K, and the volume ratio of the two phases in the channel,
uX,L = (FL/AC)(BL+1)/(1+K BL) (2)
where K = concentration of solute in the upper phase divided by that in the lower phase.
Similarly in the backward elution, the upper mobile phase introduced from the right end of the channel at FU ml/min flows through the channel at a linear velocity of uU cm/min,
uU = (FU/AC)(AU,U+AL,U)/AU,U = (FU/AC)(1+1/BU) (3)
where BU = AU,U/AL,U (volume ratio of two phases when upper phase mobile) and the solute in the mobile upper phase moves backward through the channel at a rate of uX,U cm/min according to K (concentration of solute in the upper phase divided by that in the lower phase) and the two-phase volume ratio in the channel, or
uX,U = (FU/AC)(1+1/BU)KBU/(1+KBU) = (FU/AC)K(1+BU)/(1+KBU) (4).
Then, from Eq (2) and (4) the average linear velocity (uX,i) of the solute peak is given by
uX,i = (uX,L ti,L-uX,U ti,U)/(ti,L + ti,U)
= (FL/A) ti,L (BL+1)/(1+KBL) - (FU/A) ti,U K(1+BU)/(1+KBU) /(ti,L + ti,U) (5)
where ti, L and ti, U indicate the unit programmed time for forward and backward elution, respectively.
Therefore, the retention time (tR) of solute at the end of the unit programmed dual elution is computed from the following equation,
tR = L/uX,i
=0.5 Vc(ti,L + ti,U)/FL ti,L (1+BL)/(1+KBL) - FU ti,U K(1+BU)/(1+KBU) (6)
where L is a half length of the channel and Vc, the total capacity of the channel where Vc = 2LAc. When uX,L>uX,U or uX,i>0, the solute peak moves forward and is eluted from the right terminal of the channel, and when uX,L<uX,U or uX,i<0, it moves backward and is eluted from the left terminal of the channel. If uX,L=uX,U or uX,i = 0, tR becomes infinite and the solute peak will be permanently retained within the channel.
In a simplified case of ti, U = 0, Eq (6) is reduced to a familiar form,
FLtR = RS = VL + KVU (7)
where RS is the retention volume, and VL and VU are volume of the lower mobile phase and upper stationary phase in the column, respectively. Similarly, if ti, L = 0, Eq (6) becomes
FUtR = RS = VU + VL/K (8)
and the solute peak would be eluted from the left outlet of the channel.
2)Simplified Model
In the simplified study, only the right half of the above separation channel is used and the sample was injected at the left terminal with the lower mobile phase for both hydrostatic and hydrodynamic systems. In order to avoid the elution of the test sample through the left terminal with the upper mobile phase, the partition coefficient was chosen to satisfy the formula
FL ti, L (1+BL)/(1+KBL)>FU ti, U K(1+BU)/(1+KBU) (9).
Validation of the theories
Using a set of two-phase solvent systems each with a suitable test sampales, the validity of the above theories was successfully confirmed by spiral tube assembly countercurrent chromatography.
Glossary
AC: Cross-sectional area of the channel
AL: Cross-sectional area of the channel occupied by the lower phase
AL,L: Cross-sectional area of the channel occupied by the lower phase when the lower phase is mobile
AL,L: Cross-sectional area of the channel occupied by the lower phase when the upper
AU: Cross-sectional area of the channel occupied by the upper phase
AU,U: Cross-sectional area of the channel occupied by the upper phase when the lower phase is mobile phase is mobile
AU,U: Cross-sectional area of the channel occupied by the upper phase when the upper phase is mobile
B: Volume ratio of upper phase to the lower phase in the channel or AU/AL
BL: B for lower phase mobile or AU1/AU1; BU : B for upper phase mobile or AU2/AU2
FL: Volumetric velocity of the lower phase (ml/min)
FU: Volumetric velocity of the upper phase (ml/mi)
K: Partition coefficient of solute expressed by solute concentration in the upper phase divided by that of the lower phase
L: Half length of the channel
uL: Linear velocity of the lower phase (cm/min)
uU: Linear velocity of the upper phase (cm/min)
uX,L : Solute velocity (cm/min) through the channel with the lower phase is mobile
uX,U : Solute velocity (cm/min) through the channel with the upper phase is mobile
uX,i : Average velocity (cm/min) of solute through the channel
RS: Retention volume of solute
ti, L: Unit programmed time for lower phase mobile
ti, U: Unit programmed time for upper phase mobile
tR: Retention time of solute
VC: Total column volume
VL: Volume of the lower phase in the column (0.5 VC)
VU: Volume of the upper phase in the column (0.5 VC)
理论
间歇性双电流色谱法的数学分析已提出如下:
1)通用模型
在数学上分析了间歇性双CCC的溶质峰的保留时间。该方法以给定的间隔和流速在分离柱的相对端交替洗脱,同时在列的中部充电样品解决方案。在每种洗脱模式下建立的流体动力平衡状态下,具有横截面区域AC的分离通道被分为下层AL和上层AU所占据的区域。在这里,我们假设这两个阶段在整个通道中以给定的体积比均匀分布。下层以FL mL/min的流速和上层从左端子和右端子的上流速率分别以fu ml/min的流速分别以给定的时间间隔为fu ml/min引入。 然后,对通道中的溶质峰运动的分析分为两个部分,即从前进(从左到右)洗脱和向后(右至左)洗脱,如下所示:
对于下层洗脱,以FLML/min流的通道以UL CM/min的线性速度,从通道的左侧引入下流动相,
ul =(fl/ac)(au,l+al,l)/al,l =(fl/ac)(bl+1)(1)
其中bl = au,l/al,l(下层流动时的两个阶段的体积比)。然后,下层中的溶质以UX,L cm/min的速率向前移动。
ux,l =(fl/ac)(bl+1)/(1+k bl)(2)
其中k =在上层中溶质的浓度除以下相。
同样,在向后洗脱中,从通道的右端以Fu ml/min流穿过通道以UU CM/min的线性速度从通道流过通道的上一端,
uu =(fu/ac)(au,u+al,u)/au,u =(fu/ac)(1+1/bu)(3)(3)
其中bu = au,u/al,u(上层流动时的两个阶段的体积比)和流动上层中的溶质以k的速率向后移动通道,u cm/min,根据k(上层浓度在上相,在下降阶段分配)和在通道中的两相体积比
ux,u =(fu/ac)(1+1/bu)kbu/(1+kbu)=(fu/ac)k(1+bu)/(1+kbu)(4)。
然后,从等式(2)和(4)溶质峰的平均线性速度(UX,I)由
ux,i =(ux,l ti,l-x,u ti,u)/(ti,l + ti,u)
=(fl/a)ti,l(bl+1)/(1+kbl) - (fu/a)ti,u k(1+bu)/(1+kbu)/(ti,l+ti,u)(5)
其中ti,l和ti,u分别指示了向前和向后洗脱的单元编程时间。
因此,从以下等式计算出单元编程双洗脱末端的溶质的保留时间(TR),
tr = l/ux,i
= 0.5 vc(ti,l+ti,u)/fl ti,l(1+bl)/(1+kbl) - fu ti,u k(1+bu)/(1+kbu)(1+kbu)(6)
其中l是通道和VC的一半,是VC = 2LAC的通道的总容量。当ux,l> ux,u或ux,i> 0时,溶质峰向前移动并从通道的右端子洗脱,当ux,l <ux,u或ux,i <0,i <0时,它会向后移动并从通道的左端子洗脱。 如果UX,L = UX,U或UX,I = 0,TR将变为无限,溶质峰将永久保留在通道内。
在简化的Ti情况下,u = 0,等式(6)缩小为熟悉的形式,
fltr = rs = vl + kvu(7)
其中RS是保留量,而VL和VU分别是列中的下移动相和上部固定相的体积。 同样,如果ti,l = 0,eq(6)变为
futr = rs = vu + vl/k(8)
并且溶质峰将从通道的左出口洗脱。
2)简化模型
在简化的研究中,使用上述分离通道的右半部分,并在液压系统和水力动力学系统的较低流动相处注入样品。 为了避免使用左流动相通过左终端洗脱测试样品,选择了分区系数以满足公式
fl ti,l(1+bl)/(1+kbl)> fu ti,u k(1+bu)/(1+kbu)(9)。
验证理论
使用一组具有合适测试症状的两相溶剂系统,上述理论的有效性通过螺旋管组件的逆流色谱成功证实。
词汇表
AC:通道的横截面
AL:下层占据的通道的横截面区域
AL,L:下层流动时,下层占据的通道的横截面区域
Al,L:上层占据的通道的横截面区域
AU:上层占据的通道的横截面区域
au,u:下层为流动阶段的上阶段占用的通道的横截面区域
au,u:上层流动时,上层占据的通道的横截面区域
B:通道或AU/AL的上层与下相的体积比
BL:b用于下层移动或AU1/AU1; BU:B用于上阶段移动或AU2/AU2
FL:下层的体积速度(ml/min)
FU:上相的体积速度(ML/MI)
K:由溶质浓度在上层中以溶质浓度表示除以下相的溶质的分区系数
L:通道的一半长度
UL:下层的线性速度(cm/min)
UU:上层线性速度(cm/min)
UX,L:通过较低阶段通过通道的溶质速度(cm/min)是移动的
UX,U:通过通道的溶质速度(cm/min)具有上阶段的流动性
UX,I:通过通道的溶质的平均速度(cm/min)
卢比:溶质的保留量
Ti,L:下阶段移动移动的单位编程时间
ti,U:上阶段手机的单元编程时间
TR:溶质的保留时间
VC:总列音量
VL:列中下层的体积(0.5 vc)
VU:列中上层的体积(0.5 vc)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yoichiro Ito其他文献
Yoichiro Ito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yoichiro Ito', 18)}}的其他基金
Spiral Disk Assembly For High-speed Countercurrent Chrom
高速逆流镀铬螺旋盘组件
- 批准号:
6817678 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
Spiral tube assembly for countercurrent chromatography
用于逆流色谱的螺旋管组件
- 批准号:
7969112 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
Development Of Continuous Density Gradient Cell Separati
连续密度梯度细胞分离机的研制
- 批准号:
7321305 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
Spiral tube assembly for countercurrent chromatography
用于逆流色谱的螺旋管组件
- 批准号:
7735022 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
Spiral tube assembly for countercurrent chromatography: tubing modification by a simple tool to improve the partition efficincy
用于逆流色谱的螺旋管组件:通过简单工具对管道进行改造以提高分配效率
- 批准号:
9353111 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
Development Of Continuous Density Gradient Cell Separati
连续密度梯度细胞分离机的研制
- 批准号:
6541684 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
Novel column design for centrifugal countercurrent chromatography
用于离心逆流色谱的新颖柱设计
- 批准号:
7969185 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
Spiral tube assembly for countercurrent chromatography
用于逆流色谱的螺旋管组件
- 批准号:
8557952 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
Spiral tube assembly for countercurrent chromatography
用于逆流色谱的螺旋管组件
- 批准号:
8746593 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
相似国自然基金
垂直逆流气相色谱法研究乙烯/乙烷在MOF材料中的吸附动力学
- 批准号:22308237
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Spiral tube assembly for countercurrent chromatography
用于逆流色谱的螺旋管组件
- 批准号:
7969112 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
Spiral tube assembly for countercurrent chromatography
用于逆流色谱的螺旋管组件
- 批准号:
7735022 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
Spiral tube assembly for countercurrent chromatography: tubing modification by a simple tool to improve the partition efficincy
用于逆流色谱的螺旋管组件:通过简单工具对管道进行改造以提高分配效率
- 批准号:
9353111 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
Spiral tube assembly for countercurrent chromatography
用于逆流色谱的螺旋管组件
- 批准号:
8557952 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别:
Novel column design for centrifugal countercurrent chromatography
用于离心逆流色谱的新颖柱设计
- 批准号:
7969185 - 财政年份:
- 资助金额:
$ 3.02万 - 项目类别: