Functional Analysis of the Bifunctional Ion Channel and Kinase TRPM7
双功能离子通道和激酶 TRPM7 的功能分析
基本信息
- 批准号:8047995
- 负责人:
- 金额:$ 29.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingActomyosinAdhesionsAdhesivesAdultAffectAnteriorApicalBiotinylationBlastoporesCalciumCalpain IICell AdhesionCell LineCell membraneCell physiologyCell surfaceCellsDataDefectDevelopmentEmbryoEmbryonic DevelopmentEventFibroblastsFigs - dietaryFocal AdhesionsHeart DiseasesHydrolysisInflammationInvestigationIon ChannelLeadLeftLysophosphatidic Acid ReceptorsLysophospholipidsMediatingMitogen-Activated Protein KinasesModelingMovementMyosin Type IINatureNeoplasm MetastasisNeural Crest CellNeural FoldOligonucleotidesOrganismPaperPathway interactionsPattern FormationPeptide HydrolasesPhosphatidylinositol 4,5-DiphosphatePhosphatidylinositolsPhosphorylationPhosphotransferasesPhysiological ProcessesPlatelet-Derived Growth FactorPlatelet-Derived Growth Factor ReceptorPlayPropertyProteinsPublishingReceptor ActivationRegulationReportingResearch PersonnelRoleSignal PathwaySignal Transduction PathwaySiteSpinal cord injuryTestingTimeTissuesWorkXenopus laeviscancer cellcell motilityconstrictiondirectional cellgain of functiongastrulationin vivoinorganic phosphateloss of functionlysophosphatidic acidm-calpainmutantresearch studyxenopus development
项目摘要
DESCRIPTION (provided by applicant): Directional cell motility is required for the development of an organism with proper polarity such as dorso-ventral, anterior-posterior, and left-right symmetry. We have found in Xenopus laevis that depletion of TRPM7, the first ion channel discovered to have its own kinase domain, results in embryos with severe gastrulation and neural fold closure defects, making TRPM7 the first ion channel shown to have a dramatic effect on early vertebrate development. A possible explanation for this effect is our recently reported discovery that TRPM7 controls the activity of the calcium-dependent protease m-calpain to regulate cell adhesion. Although a compelling picture is emerging of TRPM7's role in cell motility, important details are still missing, namely, the mechanism by which TRPM7's channel is activated, regulation of the kinase, and a full understanding of how and under what conditions TRPM7 controls cell motility. Finally, the specific aspect(s) of gastrulation affected by TRPM7 and the roles played by its kinase and channel in these events have not been defined. We propose two specific aims to clarify TRPM7's function and regulation on the cellular level and in vivo during Xenopus development. In the first specific aim, we will take an electrophysiological approach to investigate the hypothesis that PDGF-receptor activation of TRPM7's channel is dependent upon PIP2 synthesis. Cell surface biotinylation experiments will be used to test whether PDGF-mediated activation of TRPM7 relies upon the recruitment of the channel to the plasma membrane from intracellular sites. In addition, we've created TRPM7-knockdown fibroblast cell lines to investigate the regulation of TRPM7's kinase and its phosphorylation and regulation of myosin II by the PDGF receptor. Finally, we will test whether the PDGF receptor utilizes both TRPM7 and the ERK signaling pathway to regulate m-calpain and focal adhesion turnover. In the second specific aim we will employ channel- and kinase-dead mutants we've created in a combined loss-of-function/gain-of-function approach to define the roles of TRPM7's channel and kinase in early pattern formation in Xenopus laevis. These investigations will include an examination of TRPM7's influence on convergent extension movements and blastopore and neural fold closure. Collectively, the proposed experiments should greatly advance our understanding of TRPM7's function in vivo. Study of this bifunctional channel could deepen our understanding of many physiological processes including neural crest cell migration and could potentially lead to new strategies for treating pathological conditions dependent on cell motility such as inflammation during heart disease, cancer cell metastasis, and spinal cord injuries.
描述(由申请人提供):定向细胞运动对于具有适当极性(例如背腹、前后和左右对称)的生物体的发育是必需的。我们在非洲爪蟾中发现,TRPM7(第一个被发现具有自己的激酶结构域的离子通道)的耗尽会导致胚胎出现严重的原肠胚形成和神经折叠闭合缺陷,使 TRPM7 成为第一个被证明对早期脊椎动物具有显着影响的离子通道发展。对于这种效应的一个可能的解释是我们最近报道的发现,TRPM7 控制钙依赖性蛋白酶 m-calpain 的活性来调节细胞粘附。尽管TRPM7在细胞运动中的作用已经有了令人信服的认识,但重要的细节仍然缺失,即TRPM7通道被激活的机制、激酶的调节,以及对TRPM7如何以及在什么条件下控制细胞运动的充分理解。最后,TRPM7 影响原肠胚形成的具体方面以及其激酶和通道在这些事件中发挥的作用尚未确定。我们提出了两个具体目标来阐明 TRPM7 在爪蟾发育过程中在细胞水平和体内的功能和调节。在第一个具体目标中,我们将采用电生理学方法来研究 TRPM7 通道的 PDGF 受体激活依赖于 PIP2 合成的假设。细胞表面生物素化实验将用于测试 PDGF 介导的 TRPM7 激活是否依赖于从细胞内位点向质膜招募通道。此外,我们还创建了 TRPM7 敲低的成纤维细胞系,以研究 TRPM7 激酶的调节及其磷酸化以及 PDGF 受体对肌球蛋白 II 的调节。最后,我们将测试PDGF受体是否利用TRPM7和ERK信号通路来调节m-钙蛋白酶和粘着斑周转。在第二个具体目标中,我们将采用我们以功能丧失/功能获得相结合的方法创建的通道和激酶死亡突变体来定义 TRPM7 通道和激酶在非洲爪蟾早期模式形成中的作用。这些研究将包括检查 TRPM7 对会聚伸展运动以及胚孔和神经折叠闭合的影响。总的来说,所提出的实验应该极大地促进我们对 TRPM7 体内功能的理解。对这种双功能通道的研究可以加深我们对包括神经嵴细胞迁移在内的许多生理过程的理解,并可能产生治疗依赖于细胞运动的病理状况的新策略,例如心脏病期间的炎症、癌细胞转移和脊髓损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LOREN W RUNNELS其他文献
LOREN W RUNNELS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LOREN W RUNNELS', 18)}}的其他基金
Functional Analysis of the Bifunctional Ion Channel and Kinase TRPM7
双功能离子通道和激酶 TRPM7 的功能分析
- 批准号:
8018340 - 财政年份:2010
- 资助金额:
$ 29.05万 - 项目类别:
Functional Analysis of the Bifunctional Ion Channel and Kinase TRPM7
双功能离子通道和激酶 TRPM7 的功能分析
- 批准号:
8439467 - 财政年份:2007
- 资助金额:
$ 29.05万 - 项目类别:
Functional Analysis of the Bifunctional Ion Channel and Kinase TRPM7
双功能离子通道和激酶 TRPM7 的功能分析
- 批准号:
8601100 - 财政年份:2007
- 资助金额:
$ 29.05万 - 项目类别:
Functional Analysis of the Bifunctional Ion Channel and Kinase TRPM7
双功能离子通道和激酶 TRPM7 的功能分析
- 批准号:
7787502 - 财政年份:2007
- 资助金额:
$ 29.05万 - 项目类别:
Functional Analysis of the Bifunctional Ion Channel and Kinase TRPM7
双功能离子通道和激酶 TRPM7 的功能分析
- 批准号:
8713072 - 财政年份:2007
- 资助金额:
$ 29.05万 - 项目类别:
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
低频超声场下肉品肌动球蛋白敏感结构域及其构象变化的作用机制
- 批准号:31901612
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于飞秒激光微纳手术研究亚细胞尺度分子马达网络调控细胞三维运动的生物物理机理
- 批准号:31701215
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrins as regulators of vascular contractility in aged resistance arteries
整合素作为老化阻力动脉血管收缩力的调节剂
- 批准号:
9975078 - 财政年份:2019
- 资助金额:
$ 29.05万 - 项目类别:
Integrins as regulators of vascular contractility in aged resistance arteries
整合素作为老化阻力动脉血管收缩力的调节剂
- 批准号:
9809223 - 财政年份:2019
- 资助金额:
$ 29.05万 - 项目类别:
Actin Assembly at cadherin dependent adherens junctions
肌动蛋白在钙粘蛋白依赖性粘附连接处的组装
- 批准号:
8483248 - 财政年份:2013
- 资助金额:
$ 29.05万 - 项目类别:
Actin Assembly at cadherin dependent adherens junctions
肌动蛋白在钙粘蛋白依赖性粘附连接处的组装
- 批准号:
8683198 - 财政年份:2013
- 资助金额:
$ 29.05万 - 项目类别:
Ultrastructural Basis of Mechanotransduction in Matrix Adhesions
基质粘附力传导的超微结构基础
- 批准号:
8550088 - 财政年份:2011
- 资助金额:
$ 29.05万 - 项目类别: