Functional Analysis of the Bifunctional Ion Channel and Kinase TRPM7
双功能离子通道和激酶 TRPM7 的功能分析
基本信息
- 批准号:8713072
- 负责人:
- 金额:$ 15.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2016-11-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAnteriorBiochemicalBiologicalBiological AssayBiological ModelsBirthBrain IschemiaCell ProliferationCellsConflict (Psychology)Congenital AbnormalityCongenital Heart DefectsDefectDevelopmentDevelopmental ProcessEmbryoEmbryonic DevelopmentEventFundingHeartHomeostasisHomologous GeneHumanIncidenceIncubatedIntakeIon ChannelLeadLeftLifeLinkMagnesiumMalignant NeoplasmsMedicalModelingMusNervous system structureNeural FoldNeural Tube ClosureNeural Tube DefectsNeural tubeOrganismPathway interactionsPhenotypePhosphotransferasesPlayPopulationPregnancyPrevention strategyProcessProteinsRegulationReportingResearchRiskRoleSignal TransductionSpinal DysraphismStagingStrokeSystemTadpolesTechnologyTertiary Protein StructureTimeTissuesUnited StatesXenopusXenopus laevisbasecancer cellcell behaviorcell motilitycostdesigndirectional cellgain of functiongastrulationhuman diseasein vivoinnovationinsightloss of functionmRNA Expressionmalformationmutantneuron lossnoveloffspringpreventprotein expressionresearch studytissue/cell culturexenopus developmentzygote
项目摘要
PROJECT SUMMARY
Directional cell motility is required for the development of an organism with proper polarity such as dorso-
ventral, anterior-posterior, and left-right symmetry. We have found in Xenopus Laevis that depletion of
TRPM7, the first ion channel discovered to have its own kinase domain, results in embryos with severe
gastrulation and neural fold closure defects, making TRPM7 the first ion channel shown to have a dramatic
effect on this pivotal process during vertebrate development. Surprisingly, our research revealed that
incubation of the embryos with excess magnesium or expression of a magnesium transporter reverses this
phenotype, giving the first evidence that magnesium plays a critical role in this essential developmental
process. Loss of TRPM7's closest homologue TRPM6 in mice has recently been reported to also cause neural
tube closure defects. TRPM7 and TRPM6 are known to heterooligomerize when heterologously expressed in
tissue culture cells, but reports vary as to whether TRPM6 functions independently as a channel in vivo.
Preliminary studies indicate that TRPM7 functions within the non-canonical Wnt pathway to regulate
gastrulation and neural fold closure. While TRPM7's mRNA expression remains constant during early
development from the zygote to tadpole stage, TRPM6's mRNA expression is upregulated during gastrulation
and peaks during neurulation. We propose two specific aims to clarify the functions and regulations of these
two channels during early development. The early embryonic lethality caused by deletion of either channel in
mice represents a substantial barrier to understanding these channels' functions in vivo. In the first specific
aim, we will employ the Xenopus system, in which loss-of-function and gain-of-function experiments are
permitted by titrating levels of the protein using antisense morpholino technology, to define the role of TRPM6
and its channel and kinase domains during early development, to determine whether the two channels are
functioning in concert, and to determine the impact of these two channels on magnesium homeostasis in the
developing embryo. In the second specific aim, we will investigate how the Wnt pathway is regulating TRPM7
and will examine the potential role that 80K-H, a TRPM7- and TRPM6-interacting protein we identified, may
have in this process. With their incidence varying among different populations, neural tube closure defects
occur at an average rate of 1 per 1000 births and are the second most prevalent malformation, after congenital
heart defects, among human pregnancies. Collectively, the proposed experiments should greatly advance our
understanding of how these unique bifunctional channels are functioning in vivo, which could lead to new
strategies for preventing neural tube closure defects as well as provide new insight into other pathological
conditions with which these channels have been associated, including stroke and cancer.
项目概要
定向细胞运动对于具有适当极性的生物体(例如背侧)的发育是必需的
腹侧、前后、左右对称。我们在非洲爪蟾中发现,
TRPM7 是第一个被发现具有自己的激酶结构域的离子通道,它会导致胚胎出现严重的症状。
原肠胚形成和神经折叠闭合缺陷,使 TRPM7 成为第一个被证明具有显着性的离子通道
对脊椎动物发育过程中这一关键过程的影响。令人惊讶的是,我们的研究表明
用过量的镁孵化胚胎或表达镁转运蛋白可以逆转这种情况
表型,首次证明镁在这一重要的发育过程中发挥着关键作用
过程。最近有报道称,小鼠体内 TRPM7 最接近的同源物 TRPM6 的缺失也会导致神经
管封闭缺陷。已知 TRPM7 和 TRPM6 在异源表达时会发生异源寡聚化。
组织培养细胞,但关于 TRPM6 是否作为体内通道独立发挥作用的报道各不相同。
初步研究表明 TRPM7 在非经典 Wnt 通路中发挥调节作用
原肠胚形成和神经皱襞闭合。虽然 TRPM7 的 mRNA 表达在早期保持恒定
从受精卵发育到蝌蚪阶段,TRPM6的mRNA表达在原肠胚形成过程中上调
并在神经形成期间达到峰值。我们提出两个具体目标来明确这些机构的职能和规定
早期开发期间有两个渠道。缺失任一通道引起的早期胚胎致死率
小鼠是理解这些通道体内功能的一个巨大障碍。在第一个具体
目标,我们将采用 Xenopus 系统,其中功能丧失和功能获得实验
通过使用反义吗啉技术滴定蛋白质水平,可以确定 TRPM6 的作用
及其早期发育过程中的通道和激酶结构域,以确定这两个通道是否
协同运作,并确定这两个通道对镁稳态的影响
发育中的胚胎。在第二个具体目标中,我们将研究Wnt通路如何调节TRPM7
并将研究我们确定的 TRPM7 和 TRPM6 相互作用蛋白 80K-H 的潜在作用
在这个过程中有。由于不同人群的发病率不同,神经管闭合缺陷
平均每 1000 名新生儿中就有 1 人患有这种畸形,是仅次于先天性畸形的第二大常见畸形
人类怀孕期间的心脏缺陷。总的来说,所提出的实验应该极大地推进我们的研究
了解这些独特的双功能通道如何在体内发挥作用,这可能会导致新的
预防神经管闭合缺陷的策略,并为其他病理学提供新的见解
与这些通道相关的疾病,包括中风和癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LOREN W RUNNELS其他文献
LOREN W RUNNELS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LOREN W RUNNELS', 18)}}的其他基金
Functional Analysis of the Bifunctional Ion Channel and Kinase TRPM7
双功能离子通道和激酶 TRPM7 的功能分析
- 批准号:
8018340 - 财政年份:2010
- 资助金额:
$ 15.89万 - 项目类别:
Functional Analysis of the Bifunctional Ion Channel and Kinase TRPM7
双功能离子通道和激酶 TRPM7 的功能分析
- 批准号:
8439467 - 财政年份:2007
- 资助金额:
$ 15.89万 - 项目类别:
Functional Analysis of the Bifunctional Ion Channel and Kinase TRPM7
双功能离子通道和激酶 TRPM7 的功能分析
- 批准号:
8047995 - 财政年份:2007
- 资助金额:
$ 15.89万 - 项目类别:
Functional Analysis of the Bifunctional Ion Channel and Kinase TRPM7
双功能离子通道和激酶 TRPM7 的功能分析
- 批准号:
8601100 - 财政年份:2007
- 资助金额:
$ 15.89万 - 项目类别:
Functional Analysis of the Bifunctional Ion Channel and Kinase TRPM7
双功能离子通道和激酶 TRPM7 的功能分析
- 批准号:
7787502 - 财政年份:2007
- 资助金额:
$ 15.89万 - 项目类别:
相似国自然基金
蚕丝和家蚕前部丝腺纺丝液的原位超微结构研究
- 批准号:32302816
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
丘脑室旁核前部TGR5在慢性应激诱导的焦虑样行为中的作用及机制
- 批准号:82373860
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
家蚕前部丝腺特异表皮蛋白在角质层内膜构建及蚕丝纤维化中的功能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
谷氨酸能系统调节的前部岛叶皮层神经振荡在针刺缓解慢性疼痛中的作用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多模态影像学的视乳头区域微循环灌注评估及NAION发病机制研究
- 批准号:81800840
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
- 批准号:
10735637 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
The Intimate Interplay Between Keratoconus, Sex Hormones, and the Anterior Pituitary
圆锥角膜、性激素和垂体前叶之间的密切相互作用
- 批准号:
10746247 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
Age-Dependent N-Glycosylation of Follicle-Stimulation Hormone in Gonadotropes
促性腺激素中卵泡刺激激素的年龄依赖性 N-糖基化
- 批准号:
10679254 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
A novel proteomics approach to identify alcohol-induced changes in synapse-specific presynaptic protein interactions.
一种新的蛋白质组学方法,用于识别酒精引起的突触特异性突触前蛋白质相互作用的变化。
- 批准号:
10651991 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别:
Developing helical peptide antagonists of the growth hormone receptor
开发生长激素受体的螺旋肽拮抗剂
- 批准号:
10648820 - 财政年份:2023
- 资助金额:
$ 15.89万 - 项目类别: