Citrate Metabonegenic Regulation for the next Generation of Orthopedic Biomaterial Design
下一代骨科生物材料设计的柠檬酸代谢调节
基本信息
- 批准号:10116283
- 负责人:
- 金额:$ 33.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinaseAddressAnatomyAnimal ModelAnimalsArchitectureBiocompatible MaterialsBiomimeticsBone DevelopmentBone MatrixBone RegenerationBone TissueCell Culture TechniquesCellsCellular Metabolic ProcessCephalicChemicalsChronicCitratesComplexConsumptionCrystallizationDefectDevelopmentDevelopmental ProcessEnergy MetabolismFRAP1 geneImplantInflammationInflammatory ResponseKnowledgeMechanicsMediatingMesenchymal DifferentiationMesenchymal Stem CellsMetabolicMineralsModelingMolecularOrthopedicsOsteoblastsOsteogenesisPathway interactionsPerformancePhenotypePhysiologyPlayProcessProtein BiosynthesisProtein KinaseProteinsRattusRegulationResearchRoleSignal TransductionSkeletal systemTestingTissue EngineeringTissuesTranslatingbasebonedesignextracellularin vivomimeticsmineralizationnext generationnovelosteogenicscaffoldstem cell differentiationstem cellsuptake
项目摘要
Research Summary
The objectives of this project are to elucidate an unexplored metabonegenic regulation of citrate for bone
development, and to translate these understandings towards the design of novel biomimetic citrate-presenting
bone biomaterials for orthopedic applications. Although significant progress has been made in the
development of orthopedic biomaterials, the currently available materials are limited by their inabilities to mimic
the native tissue composition, weak mechanical strength, minimal osteoinductivity, significant inflammatory
responses, poor bone integration, and slow bone regeneration. We hypothesize that the uptake of extracellular
citrate via transporter SLC13a5 could elevate cellular energy status through modulation of cell metabolism,
which in turn leads to a facilitated osteogenic phenotype progression by inhibiting the activity of AMP-activated
protein kinase (AMPK). This new citrate-based regulation of bone development is referred to as citrate
metabonegenic regulation (Fig. 1). The identification of new and unexplored citrate-based strategies to
promote osteogenic differentiation of mesenchymal stem cell can be harnessed to more efficiently design the
next generation of biomimetic orthopedic biomaterials to address the limitations of the previous materials. To
test our hypotheses and achieve the objectives of this project, three aims are proposed: Aim 1) to elucidate the
metabonegenic regulatory effect of citrate for MSCs osteogenic differentiation; Aim 2) to apply the
understandings of the citrate molecular mechanism in the design of biomimetic citrate-presenting biomaterials
to mediate MSCs differentiation; Aim 3) To evaluate the in vivo performance of anatomically and chemically
mimetic citrate-presenting scaffolds in a rat critically sized cranial bone defect model. It is very intriguing that
the unprecedented knowledge on the unexplored citrate mechanism will enable us to design the next
generation of biomimetic dynamic orthopedic implants that may present citrate signals in demand during
cellular and tissue development. The understanding on the citrate metabonegenic regulation for bone stem cell
culture and dynamic bone materials design will not only advance the field of bone tissue engineering, but also
profoundly impact a wide array of other conditions such as MSC adipogenic differentiation since MSCs is
multipotent and the adipogenic differentiation also has high energy demand.
研究总结
该项目的目标是阐明柠檬酸盐对骨的未探索的代谢成骨调节
开发,并将这些理解转化为新型仿生柠檬酸盐的设计
用于骨科应用的骨生物材料。尽管在这方面已经取得了重大进展
骨科生物材料的发展,目前可用的材料因其无法模仿而受到限制
天然组织成分、机械强度弱、骨诱导性极小、炎症显着
反应、骨整合不良和骨再生缓慢。我们假设细胞外物质的摄取
柠檬酸通过转运蛋白 SLC13a5 可以通过调节细胞代谢来提高细胞能量状态,
这反过来又通过抑制 AMP 激活的活性来促进成骨表型进展
蛋白激酶(AMPK)。这种新的基于柠檬酸盐的骨骼发育调节被称为柠檬酸盐
代谢成骨调节(图1)。确定新的和未经探索的基于柠檬酸盐的策略
促进间充质干细胞的成骨分化可用于更有效地设计
下一代仿生骨科生物材料可以解决以前材料的局限性。到
为了检验我们的假设并实现该项目的目标,提出了三个目标: 目标 1) 阐明
柠檬酸盐对MSCs成骨分化的代谢调节作用;目标 2) 应用
了解仿生柠檬酸盐生物材料设计中的柠檬酸盐分子机制
介导 MSC 分化;目标 3) 从解剖学和化学角度评估其体内性能
在大鼠临界尺寸颅骨缺损模型中模拟柠檬酸盐呈现支架。非常有趣的是
对未探索的柠檬酸机制的前所未有的了解将使我们能够设计下一个
生成仿生动态骨科植入物,在手术过程中可以呈现所需的柠檬酸盐信号
细胞和组织发育。柠檬酸对骨干细胞代谢成骨调节的认识
培养和动态骨材料设计不仅将推动骨组织工程领域的发展,而且
由于 MSC 是
多能性和成脂分化也有很高的能量需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jian Yang其他文献
Resin modified MIL-53 (Fe) MOF for improvement of photocatalytic performance
用于改善光催化性能的树脂改性 MIL-53 (Fe) MOF
- DOI:
10.1016/j.apcatb.2016.10.072 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Tirusew Araya;Manke Jia;Jian Yang;PingZhao;KuanCai;WanhongMa;YingpingHuang - 通讯作者:
YingpingHuang
Jian Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jian Yang', 18)}}的其他基金
Molecular physiology and biophysics of cyclic nucleotide-gated channels
环核苷酸门控通道的分子生理学和生物物理学
- 批准号:
10441791 - 财政年份:2022
- 资助金额:
$ 33.4万 - 项目类别:
Molecular physiology and biophysics of cyclic nucleotide-gated channels
环核苷酸门控通道的分子生理学和生物物理学
- 批准号:
10609083 - 财政年份:2022
- 资助金额:
$ 33.4万 - 项目类别:
Molecular physiology and biophysics of cyclic nucleotide-gated channels
环核苷酸门控通道的分子生理学和生物物理学
- 批准号:
10441791 - 财政年份:2022
- 资助金额:
$ 33.4万 - 项目类别:
Photoacoustic and epigenetic nerve scaffold for nerve regeneration
用于神经再生的光声和表观遗传神经支架
- 批准号:
10445552 - 财政年份:2022
- 资助金额:
$ 33.4万 - 项目类别:
Citrate Metabonegenic Regulation for the next Generation of Orthopedic Biomaterial Design
下一代骨科生物材料设计的柠檬酸代谢调节
- 批准号:
9899204 - 财政年份:2018
- 资助金额:
$ 33.4万 - 项目类别:
Citrate Metabonegenic Regulation for the next Generation of Orthopedic Biomaterial Design
下一代骨科生物材料设计的柠檬酸代谢调节
- 批准号:
10364767 - 财政年份:2018
- 资助金额:
$ 33.4万 - 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
- 批准号:
8678913 - 财政年份:2011
- 资助金额:
$ 33.4万 - 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
- 批准号:
8182724 - 财政年份:2011
- 资助金额:
$ 33.4万 - 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
- 批准号:
8587405 - 财政年份:2011
- 资助金额:
$ 33.4万 - 项目类别:
Creating Safe Biodegradable Photoluminescent Implant Polymers
创造安全的可生物降解的光致发光植入聚合物
- 批准号:
8298146 - 财政年份:2011
- 资助金额:
$ 33.4万 - 项目类别:
相似国自然基金
AMPK通过调控Smurf1的SUMO化抑制创伤性异位骨化的研究
- 批准号:31900852
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
血管微环境中内皮细胞AMPK抑制心肌纤维化的功能与机制研究
- 批准号:81800273
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于AMPK-FXR-BSEP介导的齐墩果酸所致胆汁淤积性肝损伤作用机制研究
- 批准号:81760678
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
基于AMPK信号通路研究菝葜黄酮调控脂类代谢分子机制
- 批准号:81760157
- 批准年份:2017
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
AMPK通过Wnt/β-catenin信号通路调控绵羊肌内脂肪前体细胞分化的研究
- 批准号:31402053
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 33.4万 - 项目类别:
Multimodal control of mitochondrial energetics to shape biological aging
线粒体能量的多模式控制塑造生物衰老
- 批准号:
10864185 - 财政年份:2023
- 资助金额:
$ 33.4万 - 项目类别:
Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
- 批准号:
10537799 - 财政年份:2023
- 资助金额:
$ 33.4万 - 项目类别: