The role of glial cells in the development and function of retinal circuits
神经胶质细胞在视网膜回路发育和功能中的作用
基本信息
- 批准号:8685013
- 负责人:
- 金额:$ 4.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-12-01 至 2014-09-15
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAlzheimer&aposs DiseaseBackBindingBirthBlood VesselsCalciumCalcium SignalingCellsCellular MorphologyDependovirusDevelopmentDiffuseEpilepsyExhibitsExtracellular SpaceEyeFluorescenceFluorescence Resonance Energy TransferFrequenciesGangliaGlutamate ReceptorGlutamate TransporterGlutamatesHealthHumanImageInner Nuclear LayerInner Plexiform LayerInvestigationLeadLightMaintenanceMediatingMembraneMetabolismMethodsMigraineMolecularMonitorMorphologyMusNervous system structureNeural RetinaNeurogliaNeuronsNeurotransmittersOpticsPlayPopulationPreparationProcessProliferatingRegulationResearchRetinaRetinalRoleSchizophreniaSensorySignal TransductionSliceSurfaceSynaptic CleftSynaptic TransmissionSystemTestingTissuesTransgenic MiceVisionVisualbasecalcium indicatorcell typeclinically significantexperienceinsightneural circuitneuron developmentneurotransmitter uptakeoptical sensorpreventprogramspublic health relevancerelating to nervous systemresponsesensortwo-photonuptakevisual processvisual processingvisual stimulus
项目摘要
DESCRIPTION (provided by applicant): Mounting evidence suggests that neurons and glia engage in bi-directional signaling that affects the function and development of neural circuits. Glia can influence the excitability of neurons, by controlling the amount of neurotransmitters in the extrasynaptic space, and can directly modulate synaptic transmission. In addition, glia are the central regulators of the neurovascular interactions that control neuronal metabolism. To better understand glial function, it is essential to unravel how the close interaction between neurons and glia is established during development and the effect this has on the stabilization of neural circuits. This proposal describes an approach to elucidate the role of neuron-glia signaling in the development of murine retinal circuits. The proposed investigations will provide the basis for a long-term research program dedicated to exploring how the precise signaling between neurons, glia, and blood vessels is established and maintained. M¿ller glia are the last cell type to proliferate in the retina, and must integrate into an existing immature circuit duringa period of spontaneous correlated activity called retinal waves. Shortly before eye opening, retinal waves are mediated by glutamatergic signaling and are thought to propagate by glutamate spillover into the extrasynaptic space. M¿ller cells mature in morphology and function during glutamatergic waves, and may stabilize retinal circuits when waves cease and vision begins. Two forms of neuron-glia signaling are explored in this proposal. In the first aim, we will
determine how the maturation of glial cell transporter function affects the development of neuronal circuits. In the second aim, we will investigate how spontaneous and evoked neuronal activity influences glial calcium signaling. In aim 1 we will use optical and electrophysiological methods to describe the maturation of M¿ller cell transporter function. Levels of glutamate can be directly observed with glutamate optical sensors that increase in fluorescence when glutamate binds. I will use these sensors to monitor extrasynaptic glutamate during the transition from retinal waves to vision, and to ascertain whether or not glutamate spillover reaches M¿ller cells. M¿ller transporters will be blocked pharmacologically and two-photon calcium imaging of neuronal populations will be used to assess the effect on retinal circuits. In aim 2 we will use transgenic mice expressing the calcium indicator GCaMP3 in M¿ller cells to investigate whether neural activity drives M¿ller calcium transients throughout retinal development. An understanding of how glial cells change neuronal function as they integrate into maturing circuits will lead to fundamental insights about the cellular and molecular mechanisms of neuron-glia signaling. The maintenance of neuron-glia interactions is vital for the health of the nervous system, and in particular, the glial transporter function has proven clinical
significance.
描述(由适用提供):越来越多的证据表明,神经元和神经胶质进行双向信号传导,影响神经电路的功能和发育。神经胶质可以通过控制外斜外空间中神经递质的量来影响神经元的兴奋,并可以直接调节突触传播。另外,神经胶质是控制神经元代谢的神经血管相互作用的中心调节剂。为了更好地理解神经胶质功能,必须揭示在发育过程中如何建立神经元与胶质之间的密切相互作用以及对神经元稳定的影响。该提案描述了一种阐明神经元 - 基因信号传导在鼠永久性电路发展中的作用的方法。拟议的研究将为长期研究计划提供基础,该计划致力于探索神经元,神经胶质和血管之间的精确信号传导如何建立和维护。麦芽胶质神经胶质是在视网膜中增殖的最后一种细胞类型,必须在称为视网膜波的赞助相关活性期间集成到现有的不成熟电路中。开眼界前不久,视网膜波是由谷氨酸能信号传导介导的,并被认为可以通过谷氨酸能的Spilover传播到外突触间空间。麦芽细胞在谷氨酸能波过程中成熟的形态和功能成熟,并且当波开始停止和视力开始时,可能会稳定视网膜电路。在此提案中探索了两种形式的神经元 - 胶质信号传导。在第一个目标中,我们将
确定神经胶质细胞转运蛋白功能的成熟如何影响神经元电路的发展。在第二个目标中,我们将研究赞助商和唤起神经元活动如何影响神经胶质钙信号传导。在AIM 1中,我们将使用光学和电生理方法来描述M ller细胞转运蛋白功能的成熟。可以用谷氨酸光传感器直接观察谷氨酸水平,当谷氨酸结合时荧光增加。我将使用这些传感器在从视网膜波到视觉的过渡过程中监测外斜肌外谷氨酸,并确定谷氨酸Spilover是否到达M ller细胞。 M ller转运蛋白将在药理学上被阻断,并将使用神经元种群的两光子钙成像来评估对视网膜电路的影响。在AIM 2中,我们将使用表达钙指示剂GCAMP3的转基因小鼠研究神经活动是否在整个永久发育过程中驱动M ller钙瞬变。对神经胶质细胞在整合到成熟电路中的神经元功能的理解将导致有关神经元-GLIA信号传导的细胞和分子机制的基本见解。神经元相互作用的维持对于神经系统的健康至关重要,特别是,神经胶质转运蛋白功能已证明是临床的
意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgeann Stoddard Sack其他文献
Georgeann Stoddard Sack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georgeann Stoddard Sack', 18)}}的其他基金
The role of glial cells in the development and function of retinal circuits
神经胶质细胞在视网膜回路发育和功能中的作用
- 批准号:
8457554 - 财政年份:2012
- 资助金额:
$ 4.38万 - 项目类别:
Cellular and molecular mechanisms of peripheral sensory neuron regeneration
周围感觉神经元再生的细胞和分子机制
- 批准号:
7874537 - 财政年份:2008
- 资助金额:
$ 4.38万 - 项目类别:
Cellular and molecular mechanisms of peripheral sensory neuron regeneration
周围感觉神经元再生的细胞和分子机制
- 批准号:
7541670 - 财政年份:2008
- 资助金额:
$ 4.38万 - 项目类别:
Cellular and molecular mechanisms of peripheral sensory neuron regeneration
周围感觉神经元再生的细胞和分子机制
- 批准号:
7743010 - 财政年份:2008
- 资助金额:
$ 4.38万 - 项目类别:
相似国自然基金
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
- 批准号:42301138
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
- 批准号:52308052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
市场公平竞争与企业发展:指标测度、影响机理与效应分析
- 批准号:72373155
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
气候变暖对青藏高原高寒草甸土壤病毒多样性和潜在功能的影响
- 批准号:32301407
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高温胁迫交叉锻炼对梭梭幼苗耐旱性影响的分子机理研究
- 批准号:32360079
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 4.38万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 4.38万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 4.38万 - 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 4.38万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 4.38万 - 项目类别: