Decoding inner speech: An AI approach to transcribing thoughts via EEG & EMG
解码内心言语:一种通过脑电图转录思想的人工智能方法
基本信息
- 批准号:10058047
- 负责人:
- 金额:$ 52.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-09-14
- 项目状态:已结题
- 来源:
- 关键词:ALS2 geneAlgorithmsAmericanArchitectureAreaArticulationArtificial IntelligenceAttentionBrainClinicalCommunicationComplexDataData CollectionData SetDevelopmentElectroencephalographyElectromyographyElectrophysiology (science)Expert SystemsFosteringGenderGenetic TranscriptionHandImpairmentIndividualLanguageLeadLearningLettersLinguisticsLocationMachine LearningMapsMeasuresMental HealthMental disordersMethodsModelingMuscleOccupationsOutputPatientsPatternPerformancePersonsPsyche structurePsychiatryQuality of lifeReadingSignal TransductionSocial InteractionSpeechStimulusSumSystemTechnologyTextThinkingTimeTrainingTranslatingVocabularyVoiceWritingalgorithm trainingblindcomputerized data processingdeep learningdeep neural networkdesigndigitalhealthy volunteerimprovedinnovationlarge datasetsmachine learning algorithmmultidisciplinaryperformance testssoundspeech accuracy
项目摘要
ABSTRACT
Losing the capacity to communicate through language has a significant negative impact on a person’s
autonomy, social interactions, occupation, mental health, and overall quality of life. Many people lose the
capacity to speak and write but keep their thinking intact.
Inner speech is internally and willfully generated, non-articulated verbal thoughts (e.g., reading in
silence). Changes in the activation patterns of the brain’s language-related areas co-occur with inner speech
and can be detected with electroencephalography (EEG). Furthermore, while inner speech doesn’t lead to any
discernible voice sound or articulation, co-occurring low amplitude electrical discharges in the articulatory
muscles can be detected with electromyography (EMG). The information about ongoing inner speech reflected
in electrophysiological signals (EEG and EMG) can be used to transcribe inner speech into text or voice.
Machine learning algorithms have been used for this purpose, however, the resulting systems have low
accuracy and/or are constrained by very small vocabularies (~10 words). Furthermore, these systems need to
be trained anew for each user, which significantly increases individual data-collection time. The development of
ready-to-use/minimal-training (fine tuning) systems requires large training datasets that algorithms can use to
learn high-level features capable of being transferred between individuals. Unfortunately, to date there are no
available datasets that are large enough to train these systems.
To tackle these issues, I have assembled a multidisciplinary team of collaborators from Google AI, Yale
linguistics, and Yale Psychiatry to develop a state-of-the-art deep neural network to transcribe inner speech to
text using EEG and EMG signals. This system will incorporate some of the latest advances in artificial
intelligence and data processing developed by Google AI. It will be designed to transcribe phonemes, thus, in
principle, will be able to transcribe any word. Furthermore, we will collect the largest (x120 times) multi-subject
(n=150) electrophysiological (EEG+EMG) inner speech dataset to date (300 hrs. in total) to train the first ready-
to-use/minimal-training inner speech transcriber system.
The technology resulting from this study has the potential to radically improve the quality of life of
thousands of patients by providing them with a fast method of communicating their verbal thoughts.
Furthermore, by combining this system with one of the many text-to-speech AIs that are currently available, our
system could potentially restore the patients’ capacity to produce conversational speech.
抽象的
失去通过语言进行交流的能力会对一个人的
许多人失去了自主权、社交互动、职业、心理健康和整体生活质量。
能够说和写,但保持完整的思维。
内部言语是内部有意产生的、非明确表达的言语思想(例如,阅读
大脑语言相关区域的激活模式的变化与内部言语同时发生。
而且可以通过脑电图(EEG)检测到,而内部言语不会导致任何结果。
可辨别的声音或发音,发音中同时发生低幅度放电
肌肉可以通过肌电图(EMG)来检测有关正在进行的内部反射言语的信息。
电生理信号(脑电图和肌电图)中的信息可用于将内心言语转录为文本或语音。
机器学习算法已用于此目的,但是所得系统的性能较低
准确性和/或受到非常小的词汇表(~10 个单词)的限制。
对每个用户进行重新培训,这显着增加了个人数据收集时间。
即用型/最小训练(微调)系统需要算法可以使用的大型训练数据集
学习能够在个体之间转移的高级特征不幸的是,迄今为止还没有。
足够大的可用数据集来训练这些系统。
为了解决这些问题,我组建了一个由来自 Google AI、耶鲁大学的多学科合作者组成的团队
语言学和耶鲁大学精神病学共同开发最先进的深度神经网络,将内心言语转录为
使用脑电图和肌电图信号的文本该系统将结合人工技术的一些最新进展。
谷歌人工智能开发的智能和数据处理功能将被设计用于转录电话。
原则上,将能够转录任何单词此外,我们将收集最大(x120倍)的多主题。
(n=150) 迄今为止的电生理 (EEG+EMG) 内部语音数据集(总共 300 小时),用于训练第一个准备好的
使用/最少训练内部语音转录系统。
这项研究产生的技术有可能从根本上改善人们的生活质量
为成千上万的患者提供了一种快速表达口头想法的方法。
此外,通过将该系统与当前可用的众多文本转语音人工智能之一相结合,我们的
系统有可能恢复患者进行对话的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jose A CORTES-BRIONES其他文献
Jose A CORTES-BRIONES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jose A CORTES-BRIONES', 18)}}的其他基金
Multimodal magnetoencephalography and electroencephalography exploration of the acute effects of THC exposure on neural noise and information transmission within working memory networks
多模态脑磁图和脑电图探索 THC 暴露对工作记忆网络内神经噪声和信息传输的急性影响
- 批准号:
10453350 - 财政年份:2022
- 资助金额:
$ 52.36万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Sleep and Cardiometabolic Subgroup Discovery and Risk Prediction in United States Adolescents and Young Adults: A Multi-Study Multi-Domain Analysis of NHANES and NSRR
美国青少年和年轻人的睡眠和心脏代谢亚组发现和风险预测:NHANES 和 NSRR 的多研究多领域分析
- 批准号:
10639360 - 财政年份:2023
- 资助金额:
$ 52.36万 - 项目类别:
A Novel Algorithm to Identify People with Undiagnosed Alzheimer's Disease and Related Dementias
一种识别未确诊阿尔茨海默病和相关痴呆症患者的新算法
- 批准号:
10696912 - 财政年份:2023
- 资助金额:
$ 52.36万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 52.36万 - 项目类别:
Assessing Racial Bias in Pulmonary Medicine from the Interpretation of Pulmonary Function Tests
从肺功能测试的解释评估肺医学的种族偏见
- 批准号:
10677310 - 财政年份:2023
- 资助金额:
$ 52.36万 - 项目类别: