Functional analysis of whole-brain dynamics in learning
学习中全脑动态的功能分析
基本信息
- 批准号:10063920
- 负责人:
- 金额:$ 46.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAffectAnatomyAnimal ModelAnimalsAreaBehaviorBehavioralBiochemicalBrainBrain imagingBrain regionCaenorhabditis elegansCellsCharacteristicsCommunicationComplexDataDefectDevelopmentDimensionsEngineeringExhibitsFoodFoundationsGeneticGenetic IdentityGleanGoalsHeadHumanImageImpairmentIndividualInterneuronsInterventionInvertebratesLearningLearning ModuleMapsMeasuresMethodsMissionModelingMolecularMolecular GeneticsNematodaNervous System PhysiologyNervous system structureNeuronsNeurosciencesOlfactory LearningOpticsOrganismOutcomePatternPlayProcessPropertyPsychophysicsRegulationResearchResolutionRoleSensorySensory ProcessSmell PerceptionStructureSystemSystems AnalysisTaste PerceptionTechniquesTestingTherapeuticTimeTrainingWorkbehavior testconnectomedesignexperiencegenetic makeupin vivo calcium imaginginnovationinsightlearned behaviorlearning abilitynervous system disorderpathogenic bacteriapreventrelating to nervous systemsensory inputspatiotemporaltemporal measurementtherapy designtool
项目摘要
PROJECT SUMMARY
Learning is a complex process, and likely involves many areas of the brain that detect and process sensory
inputs, integrate experience, and display behavior. Consistently, various neurological diseases that impair
different brain areas are associated with profound defects in learning. Thus, bridging different spatial scales
and understanding the dynamics of different brain regions are essential to understanding how learning occurs
and potentially designing strategies to mitigate learning deficiency. However, it is currently not possible to
achieve these goals in most experimental systems, and our understanding of learning is limited by the
technical approaches by which either local circuit and cellular properties or coarse psychophysical
parameters underlying learning are measured. Here, we propose to address these fundamental questions in
a reduced system – the nervous system of the nematode C. elegans. The rationale is that the wiring and
genetic make-up of this network are well known, probing whole-brain dynamics with single-cell resolution
with exquisite temporal resolution is technically ready for C. elegans, and the fundamental principles for the
development and the function of the nervous system are well conserved between C. elegans and more
complex animal models. Further, C. elegans exhibits many forms of learning, similar to those displayed by
higher organisms in behavioral characteristics and molecular cellular underpinnings. Particularly, we will use
an olfactory learning paradigm whereby C. elegans learns to avoid the odorants of pathogenic bacteria, a
type of learning similar to the Garcia effect through which many animals, including humans, learn to avoid
the smell and/or taste of a food that makes them ill. Our long-term goal is to understand how learning is
encoded and executed by the function of the whole brain, and to inform the design of potential therapeutic
strategies. The central hypothesis of this project is that learning engages global activity and the learned
information is encoded in distinct functional modules. Specifically, we will test whether learned information
is encoded in the learning-dependent changes in the activity patterns of individual functional modules and/or
the interactions among the modules. To this end, we aim to image and analyze multi-cell and whole-brain
dynamics under naive and learned conditions to characterize how learning alters the structure of the brain
activities; further, we will introduce perturbations to the whole-brain dynamics and examine the consequences
for learning. This work is innovative because (1) it brings a conceptual advance to understanding learning
across scales, (2) it introduces technical advancement in whole-brain imaging and analyses, and (3) it
demonstrates perturbation strategies for altering whole-brain dynamics that have behavioral consequences.
It is significant, because it tests several highly plausible and likely conserved cellular and whole-brain
dynamic models for learning and examine their behavioral consequences, it informs and facilitates learning
studies in other systems, and it paves the way for designing interventions.
项目概要
学习是一个复杂的过程,可能涉及大脑中检测和处理感觉的许多区域
输入、整合经验并一致地表现出损害各种神经系统疾病。
不同的大脑区域与学习的严重缺陷相关,因此,弥合了不同的空间尺度。
了解不同大脑区域的动态对于理解学习如何发生至关重要
并可能设计缓解学习缺陷的策略但是,目前不可能。
在大多数实验系统中实现这些目标,而我们对学习的理解受到以下因素的限制:
技术方法,通过局部电路和细胞特性或粗略的心理物理学
在这里,我们建议解决这些基本问题。
一个简化的系统——线虫的神经系统。基本原理是布线和
该网络的遗传组成是众所周知的,以单细胞分辨率探测全脑动力学
具有精致的时间分辨率,在技术上已经为秀丽隐杆线虫做好了准备,并且基本原理
线虫和其他动物之间神经系统的发育和功能都得到了很好的保存
此外,线虫表现出多种形式的学习,与线虫所表现出的相似。
特别是,我们将使用高等生物的行为特征和分子细胞基础。
一种嗅觉学习范式,秀丽隐杆线虫学会避开病原菌的气味,
类似于加西亚效应的学习类型,包括人类在内的许多动物通过这种学习方式学会避免
使他们生病的食物的气味和/或味道我们的长期目标是了解学习是如何发生的。
由整个大脑的功能编码和执行,并为潜在治疗的设计提供信息
该项目的中心假设是学习涉及全球活动和学习者。
具体来说,我们将测试是否学习到信息。
被编码在各个功能模块的活动模式中依赖于学习的变化和/或
为此,我们的目标是对多细胞和全脑进行成像和分析。
幼稚和学习条件下的动力学来表征学习如何改变大脑的结构
活动;此外,我们将对全脑动力学引入扰动并检查其后果
这项工作具有创新性,因为(1)它为理解学习带来了概念上的进步。
跨尺度,(2)它引入了全脑成像和分析方面的技术进步,(3)它
展示了改变具有行为后果的全脑动态的扰动策略。
它很重要,因为它测试了几种高度可信且可能保守的细胞和全脑
学习的动态模型并检查其行为后果,它为学习提供信息并促进学习
其他系统的研究,并为设计干预措施铺平了道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hang Lu其他文献
Hang Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hang Lu', 18)}}的其他基金
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10570256 - 财政年份:2022
- 资助金额:
$ 46.18万 - 项目类别:
Modularly built, complete, coordinate- and template-free brain atlases
模块化构建、完整、无坐标和模板的大脑图谱
- 批准号:
10467697 - 财政年份:2022
- 资助金额:
$ 46.18万 - 项目类别:
Functional analysis of whole-brain dynamics in learning
学习中全脑动态的功能分析
- 批准号:
9914432 - 财政年份:2019
- 资助金额:
$ 46.18万 - 项目类别:
Functional analysis of whole-brain dynamics in learning
学习中全脑动态的功能分析
- 批准号:
10295765 - 财政年份:2019
- 资助金额:
$ 46.18万 - 项目类别:
Functional Analysis of Whole-Brain Dynamics in Learning
学习中全脑动态的功能分析
- 批准号:
10527358 - 财政年份:2019
- 资助金额:
$ 46.18万 - 项目类别:
Systems variation underlying the genetics of aging
衰老遗传学背后的系统变异
- 批准号:
9369804 - 财政年份:2017
- 资助金额:
$ 46.18万 - 项目类别:
Systems variation underlying the genetics of aging
衰老遗传学背后的系统变异
- 批准号:
9927549 - 财政年份:2017
- 资助金额:
$ 46.18万 - 项目类别:
Administrative Supplement: Systems variation underlying the genetics of aging
行政补充:衰老遗传学背后的系统变异
- 批准号:
9719249 - 财政年份:2017
- 资助金额:
$ 46.18万 - 项目类别:
Microfluidic assays for hyper-reactive platelets in diabetes
糖尿病高反应性血小板的微流控检测
- 批准号:
9199213 - 财政年份:2016
- 资助金额:
$ 46.18万 - 项目类别:
Microfluidic assays for hyper-reactive platelets in diabetes
糖尿病高反应性血小板的微流控检测
- 批准号:
9199213 - 财政年份:2016
- 资助金额:
$ 46.18万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 46.18万 - 项目类别:
Investigating the Effect of FLASH-Radiotherapy on Tumor and Normal Tissue
研究 FLASH 放射治疗对肿瘤和正常组织的影响
- 批准号:
10650476 - 财政年份:2023
- 资助金额:
$ 46.18万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 46.18万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 46.18万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 46.18万 - 项目类别: