Multichannel, High-fidelity Carbon Fiber Electrodes to Enhance Composite Regenerative Peripheral Nerve Interfaces

多通道、高保真碳纤维电极增强复合再生周围神经接口

基本信息

项目摘要

PROJECT SUMMARY Myoelectric interface prosthetic devices are often lauded as the next great innovation for those living with amputations. These devices typically utilize efferent neuromuscular signals, but movements that occur are often simple, disjointed, and require a separate, independent control signal for each motion. Modern prosthetics also lack any appreciable afferent sensory input that would generate appropriate proprioception and tactile feedback, thus forcing the user to visualize the device with each movement. As such, these devices are often associated with significant mental fatigue and eventual abandonment up to 75% of the time, causing significant disability. To prevent device rejection, development of an ideal prosthetic interface allowing for motor control alongside sensory feedback is key. A variety of peripheral nerve interfaces have been developed, but their success has been restricted by a critical lack of high-fidelity electrodes that would allow for stable and effective integration of the interface with the prosthetic. A novel strategy to address this issue is through the use of high-density multi-channel carbon fiber electrodes implanted into a composite regenerative peripheral nerve interface (C-RPNI). The C-RPNI entails implanting a sensorimotor peripheral nerve into a construct composed of a segment of free muscle graft sutured to dermal skin graft with reinnervation of appropriate sensory and motor end organs. The C-RPNI thus serves as an amplification system for prosthetic devices to detect simultaneous efferent motor signals and produce afferent sensory information. Fine-wire electrodes are currently utilized to interface with these C-RPNIs, but they cause fibrotic reaction over time and are limited by their inability to interact with single motor and sensory units. Carbon fiber electrodes have previously demonstrated chronic use in brain tissue without evidence of fibrotic reaction while maintaining single neural unit signaling capabilities, making them the ideal electrode material for this proposal. The overall objective of this proposal is to facilitate a neural, closed-loop sensorimotor control system for prosthetic function that mimics that of the absent limb. The central hypothesis is that these micro-scale, high-density carbon fiber electrode arrays will allow for chronic recording of compound muscle action potentials (CMAPs) from individual motor units alongside providing simultaneous electrical stimulation to produce afferent compound sensory nerve action potentials (CSNAPs) from single sensory units. This central hypothesis will be tested through the pursuit of two aims utilizing rats as the study group: (1) integrate a functional, high-density carbon fiber electrode array in C-RPNIs; and (2) use an integrated carbon fiber electrode array to chronically record and stimulate electrophysiological signaling from the C-RPNI. Developing and achieving both of these aims would encourage further progress towards the development of the ideal neural, closed-loop prosthetic device that would provide those living with amputations more natural and intuitive limb function.
项目概要 肌电接口假肢装置经常被誉为对于那些患有肌电接口的人来说的下一个伟大创新 截肢。这些设备通常利用传出神经肌肉信号,但发生的运动是 通常简单、脱节,并且每个运动都需要单独的、独立的控制信号。现代的 假肢还缺乏任何可感知的传入感觉输入来产生适当的本体感觉 和触觉反馈,从而迫使用户在每次移动时都可视化设备。因此,这些设备 高达 75% 的时间通常与严重的精神疲劳和最终遗弃有关,导致 严重残疾。为了防止装置排斥,开发理想的假肢接口以允许 运动控制和感觉反馈是关键。多种周围神经接口 开发,但他们的成功受到严重缺乏高保真电极的限制,而高保真电极将允许 接口与假肢的稳定有效的集成。解决这个问题的一个新策略是 通过使用高密度多通道碳纤维电极植入复合材料再生 周围神经接口(C-RPNI)。 C-RPNI 需要将感觉运动周围神经植入到 由一段游离肌肉移植物缝合到真皮皮肤移植物组成,并重新神经支配 适当的感觉和运动末端器官。因此,C-RPNI 可作为假肢的放大系统 检测同时传出的运动信号并产生传入的感觉信息的设备。细线 目前使用电极与这些 C-RPNI 连接,但随着时间的推移,它们会引起纤维化反应,并且 由于无法与单个运动和感觉单元相互作用而受到限制。碳纤维电极有 先前已证明在脑组织中长期使用而没有纤维化反应的证据,同时维持 单个神经单元信号传导能力,使它们成为该提案的理想电极材料。整体 该提案的目的是促进假肢的神经闭环感觉运动控制系统 模仿缺失肢体的功能。中心假设是这些微观尺度、高密度 碳纤维电极阵列将允许长期记录复合肌肉动作电位(CMAP) 从各个运动单位同时提供电刺激以产生传入 来自单个感觉单元的复合感觉神经动作电位(CSNAP)。这个中心假设将是 以大鼠为研究组,通过追求两个目标进行测试:(1)整合功能性、高密度 C-RPNI 中的碳纤维电极阵列; (2) 使用集成碳纤维电极阵列来长期 记录并刺激来自 C-RPNI 的电生理信号。开发并实现这两个目标 目标将鼓励在理想的神经闭环假体的开发方面取得进一步进展 该设备将为截肢患者提供更自然、更直观的肢体功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shelby Rae Svientek其他文献

Shelby Rae Svientek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

神经系统中动作电位双稳传导研究
  • 批准号:
    12375033
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
仿生味觉自适应柔性纳米电极阵列构建研究
  • 批准号:
    61901469
  • 批准年份:
    2019
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
  • 批准号:
    81900300
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
  • 批准号:
    31930061
  • 批准年份:
    2019
  • 资助金额:
    303 万元
  • 项目类别:
    重点项目

相似海外基金

Cardiac Sonogenetics: Noninvasive Stimulation of the Heart With Low-Intensity Focused Ultrasound
心脏声遗传学:用低强度聚焦超声对心脏进行无创刺激
  • 批准号:
    10351918
  • 财政年份:
    2022
  • 资助金额:
    $ 6.42万
  • 项目类别:
Cardiac Sonogenetics: Noninvasive Stimulation of the Heart With Low-Intensity Focused Ultrasound
心脏声遗传学:用低强度聚焦超声对心脏进行无创刺激
  • 批准号:
    10599091
  • 财政年份:
    2022
  • 资助金额:
    $ 6.42万
  • 项目类别:
Fiber-Delivered Programmable Supercontinuum Laser Adaptive to EvolvingNeurophotonic Research
光纤传输的可编程超连续谱激光器适应不断发展的神经光子学研究
  • 批准号:
    9915977
  • 财政年份:
    2019
  • 资助金额:
    $ 6.42万
  • 项目类别:
Coding of head kinematics during locomotor behavior
运动行为期间头部运动学的编码
  • 批准号:
    9759915
  • 财政年份:
    2018
  • 资助金额:
    $ 6.42万
  • 项目类别:
Novel nanotechnology-based optical stimulation platform for predictive cardiotoxicity assessment
基于新型纳米技术的光刺激平台,用于预测心脏毒性评估
  • 批准号:
    9347619
  • 财政年份:
    2017
  • 资助金额:
    $ 6.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了