Deciphering the structure and dynamics of non-canonical DNA implicated in cancer
破译与癌症相关的非规范 DNA 的结构和动力学
基本信息
- 批准号:10046709
- 负责人:
- 金额:$ 43.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAffinityAntineoplastic AgentsArchitectureAreaBindingBinding SitesBioinformaticsBiologicalBiological ProcessCancer InterventionCause of DeathChemical StructureClinicalCommunitiesComplementComplexCrystallizationDNADNA DamageDNA SequenceDNA StructureDevelopmentG-QuartetsGene Expression RegulationGoalsGrantHuman GenomeInvestigationKRAS2 geneKineticsKnowledgeLeadLigand BindingLigandsLightMalignant NeoplasmsMentorshipMolecularMolecular ConformationNeoplasm MetastasisNucleic AcidsNucleotidesOncogenesOncoproteinsPhysiologicalProbabilityPublicationsPublishingRAS genesRNARecoveryRegulationReportingResearchResolutionRoentgen RaysScientistStructureStudentsTelomere MaintenanceTelomere Maintenance GeneThermodynamicsTimeTrainingVascular Endothelial Growth FactorsWorkanti-cancer therapeuticbiophysical propertiescancer therapycell growthdesigndriving forcedrug candidatedrug discoveryimprovedin vivointerdisciplinary collaborationneoplastic cellnovelnucleic acid structureprogramspromoterside effectsmall moleculestoichiometrytargeted treatmenttelomeretherapeutic targetthree dimensional structuretumor growthundergraduate student
项目摘要
PROJECT SUMMARY
The proposed research will improve the selectivity and efficacy of anticancer therapies by contributing new
knowledge about non-canonical nucleic acid structures, G-quadruplexes (GQ) and i-motifs, and details of their
interactions with small-molecule ligands. Bioinformatics studies have identified 700,000 sequences with GQ-
forming potential in the human genome. The C-rich opposite strands are proposed to form i-motifs. There is now
convincing biological evidence that GQs and i-motifs form in vivo and that these structures complement each
other in regulating a variety of cancer-related biological processes. GQ nucleic acids have been firmly
established as an important therapeutic target for cancer. The same evidence for i-motifs is steadily
accumulating. Small molecules that bind selectively to GQ DNA and RNA and to i-motifs have been identified,
and some have been shown to inhibit tumor cells growth; however, exact mechanisms underlying this inhibition
are not known. Additionally, the number of selective i-motif ligands is low. Such ligands may ultimately become
lead compounds for cancer intervention superior to conventional mutagenetic therapies.
Nucleic acid-centered drug discovery programs suffer from limited structural information for GQs and i-motifs,
especially in the presence of ligands. As of now, no structure of an i-motif-ligand complex has been reported.
The situation is further complicated by high structural diversity of both GQs and i-motifs, their contradictory
biological functions, and our limited ability to target their specific folding topology (e.g., parallel vs antiparallel
GQs).
To address these challenges, we propose to perform comprehensive crystallographic investigation of telomeric
and oncogene promoter GQs and i-motifs, both alone and in complex with novel and commercially available
selective small-molecule ligands. The diversity of interactions which provide stability to GQs and i-motifs will be
determined. The details of ligand binding sites, as well as chemical and structural features of ligands essential
for their affinity and selectivity will be identified. This work will be complemented by spectroscopic and
calorimetric studies of the thermodynamic parameters of ligand binding. For GQ DNA, that is much more
explored, structural studies will be complemented by rigorous kinetic exploration of ligand-assisted GQ folding.
Kinetic information can help us identify the timescale of GQ formation and, thus, biological processes that can
be affected by the presence of these structures. Collectively, the proposed work will enhance our understanding
of GQ and i-motif structural plasticity, supply coordinates for drug discovery platforms, shed light on the origin of
ligand selectivity for a specific DNA or RNA target, and guide the design of novel anticancer therapies all while
providing transformative training to Swarthmore undergraduates.
项目概要
拟议的研究将通过贡献新的方法来提高抗癌疗法的选择性和疗效
关于非规范核酸结构、G-四链体 (GQ) 和 i-基序及其详细信息的知识
生物信息学研究已经鉴定出 700,000 个具有 GQ- 的序列。
富含C的相反链被认为可以形成i-基序。
生物学证据表明 GQ 和令人信服的 i 基序在体内形成,并且这些结构相互补充
其他GQ核酸在调节多种癌症相关的生物过程方面也得到了牢固的证实。
i-motifs 已被确定为重要的治疗靶点。
已鉴定出选择性结合 GQ DNA 和 RNA 以及 i-motif 的小分子,
有些已被证明可以抑制肿瘤细胞的生长;然而,这种抑制的确切机制尚不清楚。
此外,选择性 i-基序配体的数量最终可能会减少。
用于癌症干预的先导化合物优于传统的诱变疗法。
以核酸为中心的药物发现项目受到 GQ 和 i-motif 结构信息有限的困扰,
特别是在配体存在的情况下,到目前为止,还没有报道 i-基序-配体复合物的结构。
由于 GQ 和 i-motif 的高度结构多样性以及它们的矛盾性,情况变得更加复杂。
生物功能,以及我们针对其特定折叠拓扑的有限能力(例如,平行与反平行)
GQ)。
为了应对这些挑战,我们建议对端粒进行全面的晶体学研究
和癌基因启动子 GQ 和 i-基序,无论是单独的还是与新型和市售的复合物
为 GQ 和 i 基序提供稳定性的相互作用的多样性将是。
确定配体结合位点的详细信息以及配体的化学和结构特征。
因为它们的亲和力和选择性将得到光谱和选择性的补充。
对于 GQ DNA 来说,配体结合的热力学参数的量热研究远不止这些。
随着配体辅助 GQ 折叠的严格动力学探索,结构研究将得到补充。
动力学信息可以帮助我们识别 GQ 形成的时间尺度,从而识别可以
总的来说,拟议的工作将增强我们的理解。
GQ 和 i-motif 结构可塑性,药物发现平台的供应坐标,揭示了
针对特定 DNA 或 RNA 靶点的配体选择性,并指导新型抗癌疗法的设计
为斯沃斯莫尔本科生提供变革性培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liliya A Yatsunyk其他文献
Liliya A Yatsunyk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liliya A Yatsunyk', 18)}}的其他基金
Deciphering the structure and dynamics of quadruplex DNA and DNA-ligand complexes
破译四链体 DNA 和 DNA-配体复合物的结构和动力学
- 批准号:
9304843 - 财政年份:2017
- 资助金额:
$ 43.2万 - 项目类别:
相似国自然基金
线上民宿房东亲和力对房客预定行为的影响机制研究——基于多源异构数据视角
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
估计和解释序列变体对蛋白质稳定性、结合亲和力以及功能的影响
- 批准号:31701136
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
RGS19对嗜酸细胞性食管炎FcεRI信号传导通路的影响及其作用机制的研究
- 批准号:81500502
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
人B组腺病毒纤毛蛋白与DSG2受体亲和力的差异及其对病毒致病力的影响研究
- 批准号:31570163
- 批准年份:2015
- 资助金额:62.0 万元
- 项目类别:面上项目
TNFalpha-OPG相互作用对骨代谢的影响
- 批准号:30340052
- 批准年份:2003
- 资助金额:9.0 万元
- 项目类别:专项基金项目
相似海外基金
SELENOF is a Novel Tumor Suppressor and a New Target to Overcome Racial Disparity in Breast Cancer.
SELENOF 是一种新型肿瘤抑制剂,也是克服乳腺癌种族差异的新靶点。
- 批准号:
10735662 - 财政年份:2023
- 资助金额:
$ 43.2万 - 项目类别:
Understanding and Targeting Host Processes Essential to Plasmodium Infection
了解并针对疟原虫感染所必需的宿主过程
- 批准号:
10735130 - 财政年份:2023
- 资助金额:
$ 43.2万 - 项目类别:
Pilot Studies of PAX3-FOXO1 Fusions Proteins in Alveolar Rhabdomyosarcoma
PAX3-FOXO1 融合蛋白在肺泡横纹肌肉瘤中的初步研究
- 批准号:
10726763 - 财政年份:2023
- 资助金额:
$ 43.2万 - 项目类别:
Investigating how bHLH circuits integrate signals for cell fate decisions
研究 bHLH 电路如何整合信号以决定细胞命运
- 批准号:
10722452 - 财政年份:2023
- 资助金额:
$ 43.2万 - 项目类别:
Growth plate-targeted IGF1 to treat Turner Syndrome
生长板靶向 IGF1 治疗特纳综合征
- 批准号:
10819340 - 财政年份:2023
- 资助金额:
$ 43.2万 - 项目类别: