Intensified, High-Rate Reductive Immobilization of Hexavalent Chromium
六价铬的强化、高速率还原固定化
基本信息
- 批准号:10080796
- 负责人:
- 金额:$ 17.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-10 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcetatesAddressAerobicBacteriaBioavailableBiologicalBiological Response Modifier TherapyBiomassBioremediationsBiotechnologyCarcinogensCharacteristicsChemicalsChromiumCommunitiesDevelopmentEngineeringEnvironmentEnvironmental HealthEnvironmental sludgeExcisionExpression ProfilingGene ExpressionGenetic TranscriptionGoalsHazardous Waste SitesHealthHumanImmobilizationIn SituIndustry StandardKineticsLaboratoriesLettersMetabolicMetabolic PathwayMetalsMicrobeMutagensNitratesOutcomeOxidantsOxidation-ReductionOxidoreductasePerformancePhasePhenotypePhysiologyPilot ProjectsPolymersPositioning AttributePrevalenceProcessProductionProviderPseudomonas stutzeriRegulationResearchResourcesSafetySamplingSiteSourceStreamStructureSuperfundSurveysSystemTechnologyTestingToxicologyUnited States Environmental Protection AgencyVariantWaterWater SupplyWorkaxenic culturebasechromium hexavalent ioncombinatorialcostcost effectivedenitrificationdensitydesigndrinking waterelectron donorexperimental studyflexibilityground waterinnovative technologiesinsightinterestliver injurymalignant stomach neoplasmmaterials sciencemicroorganismnew technologynoveloperationoxidationpollutantprototyperemediationrenal damagereproductiveresponsesuperfund sitetechnology validationtooltoxicantwastingwater treatmentwell waterwhole genome
项目摘要
Project Summary / Abstract
Hexavalent chromium, or Cr(VI), is among the most widespread contaminants in water resources in the U.S. and
around the world. Cr(VI) has been found in at least 1,127 of the 1,699 current or former National Priority List
(NPL) sites, which have been identified by the U.S. Environmental Protection Agency (EPA) as the most serious
hazardous waste sites in the nation and are the highest priority targets for long-term federal cleanup activities.
Toxicological research has found that high concentrations of Cr(VI) can contribute to stomach cancers, kidney
and liver damage, and reproductive harm. As a result, there is significant demand among water providers and
managers of Superfund sites for innovative technologies to address Cr(VI) contamination in a cost-effective and
environmentally sustainable manner.
The lack of cost-effective technologies to reduce Cr(VI) levels in water are due to technical challenges associated
with existing physical/chemical approaches, including high cost, the need for disposal of secondary waste
streams, and performance that can be vulnerable to influent water geochemistry. Specifically, there is a need for
new technologies to reliably reduce Cr(VI) to very low parts-per-billion levels with lower costs and less waste
than existing physical or chemical treatment technologies.
This project seeks to address this need through a novel combination of materials science and bacterial reductive
immobilization. In contrast to conventional physical or chemical technologies, this new technology does not
produce a hazardous secondary waste stream. Moreover, the proposed technology offers unique redox flexibility,
which allows it to remain effective even while hydrogeological characteristics may change. These and other
advantages help position the proposed technology as a highly effective ex-situ or in-situ treatment approach to
achieve low concentrations of Cr(VI) in water.
In the proposed project, a prototype of the proposed technology is developed through comprehensive kinetic
studies under various operating conditions supported by whole-genome transcriptional studies. In addition to
developing optimum parameters for the treatment system, the project will also provide insights into the unique
physiology employed to achieve reductive immobilization of Cr(VI). Development of material composites to
deploy a high density of the targeted culture proceeds in an iterative manner to ultimately select one composite
to evaluate in a continuous-flow reactor study using both synthetic and actual contaminated groundwater.
The outcome of this project will be the proof-of-concept of a new technology for efficient, environmentally friendly,
and cost-effective Cr(VI) treatment. As a result, this project holds significant promise to provide a critically
necessary tool for protecting and remediating drinking water supplies from chromium contamination, thus
promoting public safety and environmental health.
项目概要/摘要
六价铬 (Cr(VI)) 是美国水资源中最普遍的污染物之一,
世界各地。在 1,699 个当前或以前的国家优先列表中,至少有 1,127 个中发现了 Cr(VI)
(NPL) 场所,已被美国环境保护署 (EPA) 认定为最严重的场所
全国的危险废物场,是长期联邦清理活动的最高优先目标。
毒理学研究发现,高浓度的 Cr(VI) 可导致胃癌、肾癌
以及肝脏损害和生殖损害。因此,供水商和供水商之间存在着巨大的需求。
超级基金站点的管理人员寻求创新技术,以经济高效的方式解决 Cr(VI) 污染问题
环境可持续的方式。
由于相关技术挑战,缺乏降低水中 Cr(VI) 含量的经济有效的技术
现有的物理/化学方法,包括成本高,需要处理二次废物
溪流和性能可能容易受到进水地球化学的影响。具体来说,需要
新技术能够可靠地将 Cr(VI) 降低至非常低的十亿分之一水平,同时降低成本和减少浪费
优于现有的物理或化学处理技术。
该项目旨在通过材料科学和细菌还原的新颖结合来满足这一需求
固定化。与传统的物理或化学技术相比,这项新技术不
产生危险的二次废物流。此外,所提出的技术提供了独特的氧化还原灵活性,
即使水文地质特征可能发生变化,它也能保持有效。这些和其他
优势有助于将所提出的技术定位为一种高效的异位或原位处理方法
实现水中 Cr(VI) 的低浓度。
在拟议的项目中,通过综合动力学开发了拟议技术的原型
全基因组转录研究支持的各种操作条件下的研究。此外
为处理系统开发最佳参数,该项目还将提供对独特的见解
生理学用于实现 Cr(VI) 的还原固定。开发复合材料
以迭代方式部署高密度的目标培养物,最终选择一种复合材料
使用合成水和实际受污染地下水进行连续流反应器研究进行评估。
该项目的成果将是一项新技术的概念验证,可实现高效、环保、
和具有成本效益的 Cr(VI) 治疗。因此,该项目有望提供关键的
保护和修复饮用水供应免受铬污染的必要工具,因此
促进公共安全和环境健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fatemeh Shirazi其他文献
Fatemeh Shirazi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fatemeh Shirazi', 18)}}的其他基金
Intensified, High-Rate Reductive Immobilization of Hexavalent Chromium
六价铬的强化、高速率还原固定化
- 批准号:
10707077 - 财政年份:2022
- 资助金额:
$ 17.46万 - 项目类别:
An Agent-Based Modeling Platform for Environmental Biotechnology
基于代理的环境生物技术建模平台
- 批准号:
10158243 - 财政年份:2016
- 资助金额:
$ 17.46万 - 项目类别:
Biocatalyst Platform Technology for Enhancing Cometabolic Biodegradation
增强彗星代谢生物降解的生物催化剂平台技术
- 批准号:
9348139 - 财政年份:2014
- 资助金额:
$ 17.46万 - 项目类别:
High-throughput Biocatalyst Manufacturing for Environmental Biotechnology
用于环境生物技术的高通量生物催化剂制造
- 批准号:
10082322 - 财政年份:2014
- 资助金额:
$ 17.46万 - 项目类别:
Biocatalyst Platform Technology for Enhancing Cometabolic Biodegradation
增强彗星代谢生物降解的生物催化剂平台技术
- 批准号:
8782296 - 财政年份:2014
- 资助金额:
$ 17.46万 - 项目类别:
A Novel Permeable Barrier for Groundwater Bioremediation
地下水生物修复的新型渗透屏障
- 批准号:
6548035 - 财政年份:2002
- 资助金额:
$ 17.46万 - 项目类别:
A Novel Permeable Barrier for Groundwater Bioremediation
地下水生物修复的新型渗透屏障
- 批准号:
7221409 - 财政年份:2002
- 资助金额:
$ 17.46万 - 项目类别:
A Novel Permeable Barrier for Groundwater Bioremediation
地下水生物修复的新型渗透屏障
- 批准号:
6743255 - 财政年份:2002
- 资助金额:
$ 17.46万 - 项目类别:
A Novel Permeable Barrier for Groundwater Bioremediation
地下水生物修复的新型渗透屏障
- 批准号:
7408694 - 财政年份:2002
- 资助金额:
$ 17.46万 - 项目类别:
A Novel Permeable Barrier for Groundwater Bioremediation
地下水生物修复的新型渗透屏障
- 批准号:
6665326 - 财政年份:2002
- 资助金额:
$ 17.46万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of GM-CSF-mediated metabolic regulation of monocyte function for control of pulmonary infection
GM-CSF介导的单核细胞功能代谢调节控制肺部感染的机制
- 批准号:
10877377 - 财政年份:2023
- 资助金额:
$ 17.46万 - 项目类别:
Mechanisms of GM-CSF-mediated metabolic regulation of monocyte function for control of pulmonary infection
GM-CSF介导的单核细胞功能代谢调节控制肺部感染的机制
- 批准号:
10462692 - 财政年份:2021
- 资助金额:
$ 17.46万 - 项目类别:
Mechanisms of GM-CSF-mediated metabolic regulation of monocyte function for control of pulmonary infection
GM-CSF介导的单核细胞功能代谢调节控制肺部感染的机制
- 批准号:
10302014 - 财政年份:2021
- 资助金额:
$ 17.46万 - 项目类别:
Treating prostate cancer by pharmacological coinhibition of the Warburg effect and lipogenesis
通过药理学共同抑制 Warburg 效应和脂肪生成来治疗前列腺癌
- 批准号:
9392247 - 财政年份:2017
- 资助金额:
$ 17.46万 - 项目类别:
MACROPHAGE FATTY ACID METABOLISM IN IMMUNITY TO HELMINTHS
蠕虫免疫中的巨噬细胞脂肪酸代谢
- 批准号:
9187865 - 财政年份:2015
- 资助金额:
$ 17.46万 - 项目类别: