Validating of Machine Learning-Based EEG Treatment Biomarkers in Depression
验证基于机器学习的脑电图治疗抑郁症生物标志物
基本信息
- 批准号:10009501
- 负责人:
- 金额:$ 98.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAntidepressive AgentsAwardBase of the BrainBiologicalBiological FactorsBiological MarkersCaringClinicClinicalClinical TreatmentComputer ModelsComputer softwareDataData AnalysesData SetDevelopmentElectroencephalographyEnrollmentExtravasationFeedbackFundingInterventionLaboratoriesLeadMachine LearningMapsMedical DeviceMental DepressionMental disordersMethodsNeurosciencesOutcomePathway interactionsPatient TriagePatientsPatternPerformancePharmaceutical PreparationsPharmacologyPhasePlacebosProceduresPsychiatryRegulationResearchResistanceResistance profileScientistSeedsSignal TransductionSmall Business Innovation Research GrantSourceSupervisionSystemTestingTrainingTraining ProgramsTreatment outcomeUnited States National Institutes of HealthWorkbasebiological heterogeneitycandidate markerclinical carecohortcommercializationcomorbiditycomputerized data processingcostdata acquisitiondepressed patientindividual patientmeetingsnovelpatient stratificationpatient subsetsprogramsprospectiverepetitive transcranial magnetic stimulationresponsesoftware developmentsupervised learningtherapy resistanttooltreatment optimizationtreatment responsetreatment-resistant depressionunsupervised learning
项目摘要
SUMMARY/ABSTRACT
The overarching aim of Alto Neuroscience is to advance brain-based biomarkers for psychiatric disorders in
order to both optimize treatment pathways and drive the development of novel pharmacological and non-
pharmacological interventions. Alto does this by developing and applying sophisticated machine learning
computational models to electroencephalography (EEG) data collected at scale in real-world clinical treatment
contexts. Specifically, in this direct-to-phase II SBIR proposal we will refine, and then independently validate,
two EEG-based candidate biomarkers we have identified for stratifying patients with depression in a manner that
both factors biological heterogeneity and informs treatment response. One of our biomarkers was derived in a
“top-down” (i.e. supervised) manner by trying to directly predict treatment outcome, while the other biomarker
presents a complimentary “bottom-up” (i.e. unsupervised) approach that begins by first identifying the most
biologically homogeneous subset of patients and then testing the treatment relevance of the subtyping. Together,
these findings represent very robust individual patient-level treatment-relevant EEG biomarkers, and in both
cases, help define a critically-important objective approach to prospectively identifying and treating treatment-
resistant depressed patients. A successful outcome of the proposed work would yield the first FDA-cleared
biomarkers for stratifying psychiatric conditions. It would also provide a basis for targeted development of
pharmacological and non-pharmacological interventions based on the EEG biomarkers. Both outcomes hold
substantial commercial value and exciting potential for transforming psychiatry.
摘要/摘要
Alto Neuroscience 的首要目标是推进基于大脑的精神疾病生物标志物的开发
为了优化治疗途径并推动新型药理和非药物的开发
Alto 通过开发和应用复杂的机器学习来做到这一点。
在现实临床治疗中大规模收集的脑电图 (EEG) 数据的计算模型
具体来说,在这个直接进入第二阶段的 SBIR 提案中,我们将完善并独立验证,
我们已经确定了两种基于脑电图的候选生物标志物,用于对抑郁症患者进行分层:
两者都影响生物异质性并影响治疗反应,我们的生物标志物之一源自于。
通过尝试直接预测治疗结果的“自上而下”(即监督)方式,而其他生物标志物
提出了一种免费的“自下而上”(即无监督)方法,首先确定最
生物学同质的患者子集,然后一起测试亚型的治疗相关性,
这些发现代表了非常稳健的个体患者水平的治疗相关脑电图生物标志物,并且在
案例,帮助定义一个至关重要的客观方法来前瞻性地识别和治疗治疗-
拟议工作的成功结果将产生第一个 FDA 批准的患者。
它也将为有针对性的开发提供基础。
基于脑电图生物标志物的药物和非药物干预措施均有效。
巨大的商业价值和改变精神病学的令人兴奋的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amit Etkin其他文献
Amit Etkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amit Etkin', 18)}}的其他基金
Validating of Machine Learning-Based EEG Treatment Biomarkers in Depression
验证基于机器学习的脑电图治疗抑郁症生物标志物
- 批准号:
10116492 - 财政年份:2020
- 资助金额:
$ 98.81万 - 项目类别:
Assessing an electroencephalography (EEG) biomarker of response to transcranial magnetic stimulation for major depression
评估重度抑郁症对经颅磁刺激反应的脑电图 (EEG) 生物标志物
- 批准号:
9933192 - 财政年份:2020
- 资助金额:
$ 98.81万 - 项目类别:
Validating of Machine Learning-Based EEG Treatment Biomarkers in Depression
验证基于机器学习的脑电图治疗抑郁症生物标志物
- 批准号:
10366060 - 财政年份:2020
- 资助金额:
$ 98.81万 - 项目类别:
A "Circuits-First" Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
10000142 - 财政年份:2019
- 资助金额:
$ 98.81万 - 项目类别:
A "Circuits-First" Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
10019435 - 财政年份:2019
- 资助金额:
$ 98.81万 - 项目类别:
A "Circuits-First" Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
10214488 - 财政年份:2019
- 资助金额:
$ 98.81万 - 项目类别:
A Circuit Approach to Mechanisms and Predictors of Topiramate Response
托吡酯反应机制和预测因子的电路方法
- 批准号:
10473684 - 财政年份:2018
- 资助金额:
$ 98.81万 - 项目类别:
A Circuit Approach to Mechanisms and Predictors of Topiramate Response
托吡酯反应机制和预测因子的电路方法
- 批准号:
10237286 - 财政年份:2018
- 资助金额:
$ 98.81万 - 项目类别:
A “Circuits-First” Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
9552929 - 财政年份:2017
- 资助金额:
$ 98.81万 - 项目类别:
A “Circuits-First” Platform for Personalized Neurostimulation Treatment
用于个性化神经刺激治疗的“电路优先”平台
- 批准号:
9339858 - 财政年份:2017
- 资助金额:
$ 98.81万 - 项目类别:
相似国自然基金
多脑区跨膜蛋白质组学技术用于抗抑郁潜在药靶发现
- 批准号:32171439
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
2种临床常用抗抑郁药对肠道菌群的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
抗抑郁药氟西汀对泥蚶受精的影响及其作用机理研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于脑影像与机器学习的针药联合抗抑郁效应机制与早期预测研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
从小胶质细胞激活极化和TLR4/MyD88/NF-κB信号通路探讨壮药鸡血藤的抗抑郁作用机理
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
A Feasibility Study of a Novel, Fully Remote Counseling and Sound Therapy Program for Hyperacusis
新型、完全远程咨询和听觉过敏声音治疗计划的可行性研究
- 批准号:
10651126 - 财政年份:2023
- 资助金额:
$ 98.81万 - 项目类别:
Reducing Polypharmacy and Fall Risk for Multi-Morbid Adults with Chronic Obstructive Pulmonary Disease
减少患有慢性阻塞性肺病的多种疾病成人的多重用药和跌倒风险
- 批准号:
10688259 - 财政年份:2022
- 资助金额:
$ 98.81万 - 项目类别:
Evaluating a Novel Method to Determine the rTMS Dose Needed for Treating Depression After Spinal Cord Injury
评估一种确定治疗脊髓损伤后抑郁症所需 rTMS 剂量的新方法
- 批准号:
10539436 - 财政年份:2022
- 资助金额:
$ 98.81万 - 项目类别:
Reducing Polypharmacy and Fall Risk for Multi-Morbid Adults with Chronic Obstructive Pulmonary Disease
减少患有慢性阻塞性肺病的多种疾病成人的多重用药和跌倒风险
- 批准号:
10447983 - 财政年份:2022
- 资助金额:
$ 98.81万 - 项目类别:
Improving HIV and Depression Outcomes by Reducing HIV-Mental Illness Stigma in Malawi: a pilot effectiveness-implementation trial
在马拉维通过减少艾滋病毒精神疾病耻辱来改善艾滋病毒和抑郁症的结果:试点有效性实施试验
- 批准号:
10775243 - 财政年份:2022
- 资助金额:
$ 98.81万 - 项目类别: