Role of Telomerase is DSB Repair

端粒酶的作用是 DSB 修复

基本信息

  • 批准号:
    10052953
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-12-01 至 2020-11-30
  • 项目状态:
    已结题

项目摘要

Double-strand breaks (DSBs) represent one of the most deleterious forms of DNA damage. They arise following exposure to ionizing radiation or radio-mimetic chemicals, and are also generated as a byproduct of normal cellular metabolism. Faithful repair of DSBs is critical for preserving genome integrity and suppressing malignant transformation. Accurate understanding of DSB repair mechanisms is not only important for understanding tumorigenesis, but also impacts tumor response to radiation therapy and most chemotherapy agents. During DSB repair, telomerase — an enzyme normally catalyzing the extension of telomeric DNA at chromosome ends — is capable of promiscuously adding telomeric repeats at intra-chromosomal DSBs, potentially interfering with accurate repair. Previous studies have shown that addition of telomeric repeats into intra-chromosomal regions (known as telomere sequence insertion, or TSI) causes chromosome breakage, recombination, and rearrangements. Therefore, TSI is normally suppressed to prevent genome instability. However, the role of telomerase in DSB repair has long been neglected, and it remains unknown how telomerase-mediated TSI at DSBs is suppressed in human and mammalian cells. Our recent findings strongly support that TSI is caused by erroneous addition of telomeric repeats at DSBs by telomerase. In addition, we have identified MLH1 as a TSI suppressor in telomerase-expressing cells. Using domain-specific mutations of MLH1, we also find that MLH1 recruitment to DSBs is required for suppressing TSI. The central hypothesis of this proposal is that in response to DSB induction, MLH1 localizes at intra-chromosomal break sites to prevent telomerase from adding telomeric repeats at DSBs, therefore ensuring accurate repair and protecting genome stability. The objective of this R03 proposal is to perform a second analysis of TSI and establish a defined molecular system to investigate the regulatory mechanism underlying TSI. In Aim 1, we will develop an inducible DSB repair system to study TSI. In Aim 2, we will define the roles of various DSB repair proteins in TSI suppression. Findings from the proposed research will gain novel insights and accurate understanding of DSB repair and genome instabilities, and offer guidance in developing new therapeutic strategies for tumor management.
双链断裂 (DSB) 是最有害的 DNA 损伤形式之一。 暴露于电离辐射或拟辐射化学物质后,也以 DSB 的忠实修复对于保存基因组至关重要。 完整性和抑制恶性转化的准确理解。 不仅对肿瘤发生很重要,而且影响肿瘤对辐射的反应 在 DSB 修复过程中,端粒酶(一种通常具有催化作用的酶)会发挥作用。 染色体末端端粒 DNA 的延伸——能够随意添加端粒 在染色体内 DSB 处重复,可能会干扰先前的研究。 已经表明,将端粒重复添加到染色体内区域(称为端粒) 序列插入(TSI)会导致染色体断裂、重组和重排。 因此,通常会抑制 TSI 以防止基因组不稳定。 端粒酶在 DSB 修复中的作用长期以来一直被忽视,并且端粒酶如何介导仍不清楚 DSB 的 TSI 在人类和哺乳动物细胞中受到抑制。我们最近的研究结果有力地支持了这一点。 TSI 是由端粒酶在 DSB 上错误添加端粒重复序列引起的。 使用域特异性将 MLH1 鉴定为端粒酶表达细胞中的 TSI 抑制因子。 MLH1 突变,我们还发现 MLH1 招募到 DSB 是抑制 TSI 所必需的。 该提议的中心假设是,响应 DSB 诱导,MLH1 定位于 染色体内断裂位点,以防止端粒酶在 DSB 处添加端粒重复序列, 因此确保精确修复并保护基因组稳定性是 R03 的目标。 建议对 TSI 进行第二次分析并建立一个明确的分子系统 研究 TSI 的调控机制 在目标 1 中,我们将开发一种诱导型 DSB。 修复系统来研究 TSI 在目标 2 中,我们将定义各种 DSB 修复蛋白在其中的作用。 TSI 抑制。拟议研究的结果将获得新颖和准确的见解。 了解 DSB 修复和基因组不稳定性,并为开发新的技术提供指导 肿瘤管理的治疗策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Weihang Chai其他文献

Weihang Chai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Weihang Chai', 18)}}的其他基金

Molecular Basis of Coats Plus Disease
Coats Plus 疾病的分子基础
  • 批准号:
    10797782
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Molecular Basis of Coats Plus Disease
Coats Plus 疾病的分子基础
  • 批准号:
    10607126
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Identification of a novel tumor suppressorof melanoma and UV-induced genome instability
黑色素瘤的新型肿瘤抑制因子和紫外线诱导的基因组不稳定性的鉴定
  • 批准号:
    10539561
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
Molecular Modulator of RPA and RAD51 in Maintaining Genome Stability
RPA 和 RAD51 维持基因组稳定性的分子调节剂
  • 批准号:
    10153729
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
Molecular Modulator of RPA and RAD51 in Maintaining Genome Stability
RPA 和 RAD51 维持基因组稳定性的分子调节剂
  • 批准号:
    10541201
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
Molecular Modulator of RPA and RAD51 in Maintaining Genome Stability
RPA 和 RAD51 维持基因组稳定性的分子调节剂
  • 批准号:
    10322742
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
Molecular Modulator of RPA and RAD51 in Maintaining Genome Stability
RPA 和 RAD51 维持基因组稳定性的分子调节剂
  • 批准号:
    10055860
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
Role of human CST in preventing telomere loss
人类 CST 在预防端粒丢失中的作用
  • 批准号:
    9145437
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
Mechanisms of fork restart in response to genotoxic stress
响应基因毒性应激的分叉重启机制
  • 批准号:
    9335920
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
Mechanisms of fork restart in response to genotoxic stress
响应基因毒性应激的分叉重启机制
  • 批准号:
    9551636
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:

相似国自然基金

端粒酶激活型DNA纳米机器用于环状RNA原位成像及三阴性乳腺癌的转移监测研究
  • 批准号:
    82302348
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
先天性小头畸形蛋白ASPM促进端粒酶活性维持的分子机制
  • 批准号:
    32300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CagA抑制端粒酶逆转录酶泛素化降解的分子机制及其在早期肠化生中的作用研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
端粒酶逆转录酶通过调控细胞自噬保护心肌缺血再灌注损伤及加味丹参饮作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
用于肿瘤标志物端粒酶超灵敏检测的DNA步行纳米机器
  • 批准号:
    82272119
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Elucidation of contributions of telomere damage and non-cell autonomy to the pathophysiology of Friedreich ataxia using a zebrafish model
使用斑马鱼模型阐明端粒损伤和非细胞自主性对弗里德赖希共济失调病理生理学的贡献
  • 批准号:
    10723485
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Understanding and Targeting the R-Loop-Mediated DNA Damage Response at Telomeres
了解并靶向 R 环介导的端粒 DNA 损伤反应
  • 批准号:
    10716512
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Investigating the role of telomere failure on intestinal stem cell niche function
研究端粒衰竭对肠道干细胞生态位功能的作用
  • 批准号:
    10678095
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Mechanisms of Telomere Cohesion
端粒凝聚机制
  • 批准号:
    10622894
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Cystathionine Gamma Lyase (CSE) and Hydrogen Sulfide Regulation of Vascular Aging
胱硫醚γ裂解酶 (CSE) 和硫化氢对血管老化的调节
  • 批准号:
    10715408
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了