Computational Tools for Analysis and Visualization of Quality Control Issues in Metabolomic Data
用于代谢组数据质量控制问题分析和可视化的计算工具
基本信息
- 批准号:10005202
- 负责人:
- 金额:$ 43.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAffectAlgorithmic SoftwareAlgorithmsAttentionBeechBioinformaticsBiologicalBiologyBiomedical ResearchBiometryCancer CenterClinicalClinical MedicineCollaborationsCommunitiesComputer softwareCore FacilityCountryCustomDNADataDetectionDevelopmentDiagnosisDiseaseDocumentationEducational workshopEnvironmental Risk FactorFacultyFeedbackFundingGalaxyGenomicsGoalsInternationalLaboratoriesLeadershipLettersMapsMass Spectrum AnalysisMissionModelingMolecular ProfilingPlug-inProcessProteinsProteomicsQuality ControlRNAReproducibilityResearchResearch PersonnelResourcesSamplingSoftware EngineeringSourceSystemTestingThe Cancer Genome AtlasTrainingTranslatingVariantVisualVisualizationWorkbasebioinformatics toolbuilt environmentcloud basedcomputerized toolscomputing resourcesdata qualityexperienceexperimental studyflexibilityimprovedinnovationinstrumentinteroperabilitymembermetabolomicsmetabolomics resourcemultidisciplinarymultiple data sourcesnext generationopen sourceprogramssoftware developmenttooltranscriptomicstranslational scientisttrenduser-friendlyweb portalweb sitewebinarworking group
项目摘要
* * * Abstract * * *
In omic studies of all types (e.g., genomic, transcriptomic, proteomic, metabolomic), technical batch effects
pose a fundamental challenge to quality control and reproducibility. The possibilities for serious error are
greatly magnified in metabolomics, however, due to a range of possible platform, operator, instrument, and
environmental factors that can cause batch (or trend) effects. Hence, there is a need for routine surveillance
and correction of batch effects within and across metabolomics laboratories and technological platforms.
Accordingly, we propose here to develop the MetaBatch algorithms, computational tool, and web portal.
For development of MetaBatch, we will leverage our experience in developing MBatch, a tool that became
indispensible for quality-control of data in all 33 projects of The Cancer Genome Atlas (TCGA) program. Our
first aim is to translate the successful quality control model from TCGA to metabolomics by customizing and
extending the MBatch pipeline for detection, quantitation, diagnosis, interpretation, and correction of batch and
trend effects. The second aim is to develop and incorporate innovative metabolomics-specific algorithms,
including major visualization resources such as our interactive Next-Generation Clustered Heat Maps. The
third aim is to distribute MetaBatch to the research community as open-source software and in cloud-based
and Galaxy versions. The fourth aim is to provide plug-in capability for integration of MetaBatch with other
metabolomic resources, prominently including Metabolomics Workbench (in collaboration with Dr. Shankar
Subramaniam) and others developed within the Common Fund Metabolomics Program. Our fifth aim is to
promote MetaBatch actively and interact extensively with other Consortium members and the metabolomics
research community. With active support from MD Anderson Faculty and Academic Development, we will
provide documentation, tutorials, videos, demonstrations, and training to accelerate use and to solicit feedback
on limitations, possible improvements, and additional modules that would be useful in real-world workflows.
We bring a variety of assets to the project, including: the MBatch resource as a starting point for software
development; multidisciplinary expertise in bioinformatics, biostatistics, software engineering, biology, and
clinical medicine; PIs with a combined 21 years of experience in molecular profiling studies of clinical disease
(in a consortial context); international leadership in batch effects analysis; a software engineering team with a
track record of producing high-end, highly visual bioinformatics packages and websites; a team of 20 Analysts
whose expertise can be called on; extensive computing resources, including one of the most powerful
academically based machines in the world; strong institutional support; and close working relationships with
first-class basic, translational, and clinical researchers throughout MD Anderson, one of the foremost cancer
centers in the country. Our bottom-line mission will be to aid the research community's effort to improve rigor
and reproducibility in metabolomics for scientific understanding and to alleviate disease.
!
* * * 抽象的 * * *
在所有类型的组学研究(例如基因组学、转录组学、蛋白质组学、代谢组学)中,技术批次效应
对质量控制和再现性提出了根本性挑战。出现严重错误的可能性是
然而,由于一系列可能的平台、操作员、仪器和
可能导致批次(或趋势)效应的环境因素。因此,需要进行日常监测
以及代谢组学实验室和技术平台内部和之间的批次效应校正。
因此,我们在此建议开发 MetaBatch 算法、计算工具和门户网站。
对于 MetaBatch 的开发,我们将利用我们开发 MBatch 的经验,该工具已成为
对于癌症基因组图谱 (TCGA) 计划的所有 33 个项目的数据质量控制不可或缺。我们的
第一个目标是通过定制和分析将成功的质量控制模型从 TCGA 转化为代谢组学
扩展 MBatch 管道,用于批次和批次的检测、定量、诊断、解释和校正
趋势效应。第二个目标是开发和整合创新的代谢组学特定算法,
包括主要的可视化资源,例如我们的交互式下一代集群热图。这
第三个目标是将 MetaBatch 作为开源软件和基于云的方式分发给研究社区
和银河版本。第四个目标是提供 MetaBatch 与其他集成的插件功能
代谢组学资源,主要包括代谢组学工作台(与 Shankar 博士合作)
Subramaniam)和其他在共同基金代谢组学计划中开发的项目。我们的第五个目标是
积极推广MetaBatch并与其他联盟成员和代谢组学广泛互动
研究社区。在 MD 安德森教授和学术发展部的积极支持下,我们将
提供文档、教程、视频、演示和培训,以加速使用并征求反馈
关于限制、可能的改进以及在现实工作流程中有用的附加模块。
我们为该项目带来了各种资产,包括: MBatch 资源作为软件的起点
发展;生物信息学、生物统计学、软件工程、生物学等多学科专业知识
临床医学; PI 在临床疾病分子谱研究方面拥有总计 21 年的经验
(在财团背景下);批次效应分析领域处于国际领先地位;一个软件工程团队
制作高端、高度可视化生物信息学软件包和网站的记录; 20 名分析师组成的团队
可以利用其专业知识;广泛的计算资源,包括最强大的计算资源之一
世界上基于学术的机器;强有力的制度支持;和密切的工作关系
MD 安德森癌症中心拥有一流的基础、转化和临床研究人员,MD 安德森是最重要的癌症研究中心之一
国内的中心。我们的底线使命是帮助研究界提高严谨性
以及代谢组学的可重复性,以实现科学理解和减轻疾病。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rehan Akbani其他文献
Rehan Akbani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rehan Akbani', 18)}}的其他基金
The Cancer Proteome Atlas: an Integrated Bioinformatics Resource for Functional Cancer Proteomic Data
癌症蛋白质组图谱:功能性癌症蛋白质组数据的综合生物信息学资源
- 批准号:
10653202 - 财政年份:2022
- 资助金额:
$ 43.36万 - 项目类别:
A Genome Data Analysis Center Focused on Batch Effect Analysis and Data Integration
专注于批量效应分析和数据集成的基因组数据分析中心
- 批准号:
10300778 - 财政年份:2021
- 资助金额:
$ 43.36万 - 项目类别:
A Genome Data Analysis Center Focused on Batch Effect Analysis and Data Integration
专注于批量效应分析和数据整合的基因组数据分析中心
- 批准号:
10689115 - 财政年份:2021
- 资助金额:
$ 43.36万 - 项目类别:
Computational Tools for Analysis and Visualization of Quality Control Issues in Metabolomic Data
用于代谢组数据质量控制问题分析和可视化的计算工具
- 批准号:
9615762 - 财政年份:2018
- 资助金额:
$ 43.36万 - 项目类别:
Computational Tools for Analysis and Visualization of Quality Control Issues in Metabolomic Data
用于代谢组数据质量控制问题分析和可视化的计算工具
- 批准号:
10251093 - 财政年份:2018
- 资助金额:
$ 43.36万 - 项目类别:
Batch effects in molecular profiling data on cancers: detection, quantitation, interpretation, and correction
癌症分子分析数据的批次效应:检测、定量、解释和校正
- 批准号:
9789027 - 财政年份:2016
- 资助金额:
$ 43.36万 - 项目类别:
Batch effects in molecular profiling data on cancers: detection, quantitation, interpretation, and correction
癌症分子分析数据的批次效应:检测、定量、解释和校正
- 批准号:
9352299 - 财政年份:2016
- 资助金额:
$ 43.36万 - 项目类别:
Integrated analysis of protein expression data from the Reverse Phase Protein Array (RPPA) platform
对反相蛋白阵列 (RPPA) 平台的蛋白表达数据进行集成分析
- 批准号:
10005168 - 财政年份:2016
- 资助金额:
$ 43.36万 - 项目类别:
Integrated analysis of protein expression data from the Reverse Phase Protein Array (RPPA) platform
对反相蛋白阵列 (RPPA) 平台的蛋白表达数据进行集成分析
- 批准号:
9789028 - 财政年份:2016
- 资助金额:
$ 43.36万 - 项目类别:
Integrative Pipeline for Analysis & Translational Application of TCGA Data (GDAC)
综合分析管道
- 批准号:
9234838 - 财政年份:2009
- 资助金额:
$ 43.36万 - 项目类别:
相似国自然基金
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
社会网络与新产品采用:二元网络结构驱动的社会影响机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 43.36万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 43.36万 - 项目类别:
Adaptation of a Digital Health Intervention for Chronic Condition Related fatigue to the Latino population
针对拉丁裔人群慢性病相关疲劳的数字健康干预措施的适应
- 批准号:
10697435 - 财政年份:2023
- 资助金额:
$ 43.36万 - 项目类别:
I-TRANSFER Improving TRansitions ANd outcomeS oF sEpsis suRvivors
I-TRANSFER 改善脓毒症幸存者的转变和结果
- 批准号:
10824878 - 财政年份:2023
- 资助金额:
$ 43.36万 - 项目类别:
Using Momentary Measures to Understand Physical Activity Adoption and Maintenance among Pacific Islanders in the United States
使用临时措施了解美国太平洋岛民体育活动的采用和维持情况
- 批准号:
10737528 - 财政年份:2023
- 资助金额:
$ 43.36万 - 项目类别: