Model of Platelet Adhesion and Thrombus Formation
血小板粘附和血栓形成模型
基本信息
- 批准号:8055354
- 负责人:
- 金额:$ 39.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-08 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdhesionsAdhesivesAnimal ModelAnimalsAnticoagulantsAntiplatelet DrugsArterial Fatty StreakAspirinBernard-Soulier SyndromeBindingBlocking AntibodiesBloodBlood PlateletsBlood VesselsCD42b AntigensCellsCerealsClinicalClinical TrialsCoagulation ProcessCollagenComputer SimulationDataDefectDepositionDevelopmentDiseaseDissociationDrug usageEmbolismEventExperimental ModelsF2R geneFibrinogenFlow CytometryFrequenciesFutureGrowthHemorrhageHemostatic functionHumanImageryIn VitroIncidenceIndividualInheritedInjuryIntegrinsKineticsLigand BindingLigandsMeasuresMediatingModelingMolecularMulticellular ProcessMusMutant Strains MiceMyocardial InfarctionPatientsPharmaceutical PreparationsPhasePhenotypePlasmaPlatelet ActivationPlatelet Count measurementPlatelet GlycoproteinsPlavixPreventionProbabilityPropertyRiskRuptureSimulateSiteSpeedStrokeSurfaceSystemTestingThrombastheniaThrombinThromboembolismThrombosisThrombusTransgenic MiceWorkadhesion receptorbaseblood vessel occlusionclinical Diagnosisdrug developmenthemodynamicsin vivoin vivo Modelinjuredintravital microscopyloss of functionmouse modelmulti-scale modelingmutantpredictive modelingpreventpublic health relevancereceptorresearch studyresponseshear stresssimulationvon Willebrand Diseasevon Willebrand Factor
项目摘要
DESCRIPTION (provided by applicant): Platelets adhesion to sites of vascular injury is a key event not only in the prevention of excessive bleeding (hemostasis) but also in the formation of platelet-rich clots (thrombi) in response to atherosclerotic plaque rupture, which is a leading cause of heart attacks and stroke. In the latter case, the development of drugs that prevent platelet-mediated clot formation are often hampered by an inability to predict the extent to which hemostasis may be impaired. Unfortunately, no adequate computational model exists that could potentially aid clinicians in predicting which patients may be at risk for bleeding or acute thrombotic events based on direct cellular and molecular information. Part of the problem may result from an inability to study human platelet thrombus formation in vivo. That said, there is evidence demonstrating that the ability of platelets to initially stick to the injured vessel wall is controlled by the synergistic action of two distinct platelet adhesion receptors: 1) Platelet glycoprotein Ib alpha (GPIb1) that supports platelet translocation due to rapid rates of bond formation and dissociation with surface-immobilized von Willebrand factor (VWF), and 2) the integrin 1221 that supports firm adhesion of platelets to exposed collagen. A third platelet receptor, 1IIb23, binds to plasma fibrinogen and is critical for mediating platelet: platelet interactions that contribute to thrombus growth and stability. In this project, we propose to extend our successful multiscale simulation of platelet hydrodynamics and receptor-mediated aggregation in shear flow to consider the processes of multicellular thrombus initiation, growth, and rupture based on in vitro and in vivo models of platelet adhesion. Importantly, we have access to unique and powerful animal models developed by the Diacovo lab to observe human platelet-mediated thrombus formation under physiologically relevant conditions (i.e. in vivo), which will be used to validate and refine the computational model. Once developed, the multiscale platelet adhesion model will be applied to the prediction of clinical observations of defects in hemostasis such as von Willebrand disease (VWD), the most common inheritable bleeding disorder in humans. The resulting simulation will also provide a rigorous framework for incorporation of additional receptor: ligand interactions required for platelet activation such as GPVI: collagen, P2Y12:ADP, and PAR1:thrombin. This will enable us to apply our model to predicting possible deleterious consequences associated with the administration of antiplatelet drugs used to prevent thrombus formation in patients with diseased blood vessels. The proposed work is organized around three specific aims: Aim 1: Development of a multiscale model of platelet adhesion and thrombus initiation, incorporating GPIb1:VWF, 1221:collagen, and 1IIb23:fibrinogen interactions. Aim 2: Multiscale modeling of thrombus stability and rupture with embolus formation. Aim 3: Prediction of clinical bleeding phenotype based on molecular input parameters from in vitro and in vivo studies.
PUBLIC HEALTH RELEVANCE:
A predictive model of hemostasis (cessation of blood loss following injury) and thrombosis (pathological occlusion of blood vessels) based on molecular and cellular properties is currently lacking. We propose to develop a multiscale computer simulation that is validated with a unique experimental model in which human platelets can be observed in the realistic in vivo setting of a genetically modified mouse. The simulation will be first applied to the clinical investigation and diagnosis of hereditary bleeding disorders, and in the future will enable phenotype prediction of patients treated with anticoagulants such as aspirin and Plavix.
描述(由申请人提供):血小板对血管损伤部位的粘附不仅是预防过多的出血(止血),而且在响应动脉粥样硬化斑块破裂而形成富含血小板的凝块(血栓)的过程中,这是心脏病发作和心脏攻击和Stroke的主要原因。在后一种情况下,通常无法预测止血症受到损害的程度,通常会阻碍预防血小板介导的凝块形成的药物的发展。不幸的是,没有足够的计算模型可能会帮助临床医生预测哪些患者可能会基于直接细胞和分子信息而有出血或急性血栓性事件的风险。问题的一部分可能是由于无法在体内研究人血小板血栓形成而导致的。 That said, there is evidence demonstrating that the ability of platelets to initially stick to the injured vessel wall is controlled by the synergistic action of two distinct platelet adhesion receptors: 1) Platelet glycoprotein Ib alpha (GPIb1) that supports platelet translocation due to rapid rates of bond formation and dissociation with surface-immobilized von Willebrand factor (VWF), and 2) the integrin 1221 that支持血小板对暴露胶原蛋白的坚固粘附。第三个血小板受体1IIB23与血浆纤维蛋白原结合,对于介导血小板至关重要:血小板相互作用有助于血栓生长和稳定性。在这个项目中,我们建议扩展我们成功对剪切流中血小板流体动力学和受体介导的聚集的多尺度模拟,以考虑基于体外和体内血小板粘附模型的多细胞血栓启动,生长和破裂的过程。重要的是,我们可以访问Diacovo Lab开发的独特而有力的动物模型,以在生理相关的条件下(即体内)观察人血小板介导的血栓形成,该模型将用于验证和完善计算模型。一旦开发,多尺度血小板粘附模型将应用于止血性缺陷的临床观察结果,例如von Willbrand疾病(VWD),这是人类中最常见的遗传性出血疾病。所得的模拟还将提供一个严格的框架,用于掺入其他受体:血小板激活所需的配体相互作用,例如GPVI:胶原蛋白,P2Y12:ADP和PAR1:pAR1:凝血酶。这将使我们能够将模型应用于预测与用于防止患有血管患者血栓形成的抗血小板药物有关的可能有害后果。提出的工作是围绕三个特定目的组织的:目标1:开发血小板粘附和血栓启动的多尺度模型,结合了GPIB1:VWF,1221:胶原蛋白和1IIB23:纤维蛋白原相互作用。目标2:通过栓塞形成的血栓稳定性和破裂的多尺度建模。目标3:基于体外和体内研究的分子输入参数的临床出血表型的预测。
公共卫生相关性:
目前缺乏基于分子和细胞特性的止血和血栓形成(血管的病理阻塞)的预测模型。我们建议开发一个多尺度计算机模拟,该模拟通过独特的实验模型验证,在该模型中可以在遗传修饰的小鼠的体内环境中观察到人血小板。该模拟将首先应用于遗传性出血疾病的临床研究和诊断,将来将使用阿司匹林和PLAVIX等抗凝剂治疗的患者进行表型预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas G Diacovo其他文献
Thomas G Diacovo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas G Diacovo', 18)}}的其他基金
Targeting the Thromboinflammatory Response to Mitigate Bowel Injury in Necrotizing Enterocolitis
靶向血栓炎症反应以减轻坏死性小肠结肠炎的肠道损伤
- 批准号:
10840235 - 财政年份:2023
- 资助金额:
$ 39.61万 - 项目类别:
Targeting non-classical oncogenes as therapy for T-ALL
针对非经典癌基因治疗 T-ALL
- 批准号:
8680039 - 财政年份:2012
- 资助金额:
$ 39.61万 - 项目类别:
Targeting non-classical oncogenes as therapy for T-ALL
针对非经典癌基因治疗 T-ALL
- 批准号:
8513283 - 财政年份:2012
- 资助金额:
$ 39.61万 - 项目类别:
Targeting non-classical oncogenes as therapy for T-ALL
针对非经典癌基因治疗 T-ALL
- 批准号:
9062391 - 财政年份:2012
- 资助金额:
$ 39.61万 - 项目类别:
Targeting non-classical oncogenes as therapy for T-ALL
针对非经典癌基因治疗 T-ALL
- 批准号:
8346060 - 财政年份:2012
- 资助金额:
$ 39.61万 - 项目类别:
GPIb Alpha-VWF-A1 bond kinetics in health and disease
健康和疾病中的 GPIb Alpha-VWF-A1 键动力学
- 批准号:
8122201 - 财政年份:2010
- 资助金额:
$ 39.61万 - 项目类别:
GPIb Alpha-VWF-A1 bond kinetics in health and disease
健康和疾病中的 GPIb Alpha-VWF-A1 键动力学
- 批准号:
8286364 - 财政年份:2010
- 资助金额:
$ 39.61万 - 项目类别:
GPIb Alpha-VWF-A1 bond kinetics in health and disease
健康和疾病中的 GPIb Alpha-VWF-A1 键动力学
- 批准号:
7947169 - 财政年份:2010
- 资助金额:
$ 39.61万 - 项目类别:
Model of Platelet Adhesion and Thrombus Formation
血小板粘附和血栓形成模型
- 批准号:
8209188 - 财政年份:2010
- 资助金额:
$ 39.61万 - 项目类别:
Model of Platelet Adhesion and Thrombus Formation
血小板粘附和血栓形成模型
- 批准号:
8598507 - 财政年份:2010
- 资助金额:
$ 39.61万 - 项目类别:
相似国自然基金
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
- 批准号:82370515
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
- 批准号:82360301
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
活血通腑方调控NETs干预术后腹腔粘连组织纤维化新途径研究
- 批准号:82374466
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
Molecular engineering of HA-based lubricants for articular cartilage
用于关节软骨的 HA 基润滑剂的分子工程
- 批准号:
10712721 - 财政年份:2023
- 资助金额:
$ 39.61万 - 项目类别:
Red blood cell ATP export and transfusion in sepsis
脓毒症中红细胞 ATP 输出和输血
- 批准号:
10584768 - 财政年份:2023
- 资助金额:
$ 39.61万 - 项目类别:
Reagentless Sensor Technologies For Continuous Monitoring of Heart Failure Biomarkers
用于连续监测心力衰竭生物标志物的无试剂传感器技术
- 批准号:
10636089 - 财政年份:2023
- 资助金额:
$ 39.61万 - 项目类别:
Novel strategies to accelerate repair of drug-induced hepatotoxicity
加速修复药物引起的肝毒性的新策略
- 批准号:
10718314 - 财政年份:2023
- 资助金额:
$ 39.61万 - 项目类别:
Biomolecule releasing adhesive for cell-mediated labral repair
用于细胞介导的盂唇修复的生物分子释放粘合剂
- 批准号:
10736334 - 财政年份:2023
- 资助金额:
$ 39.61万 - 项目类别: