ARGUS-MDS: automated, quantitative and scalable system for social processes in behavioral health
ARGUS-MDS:行为健康社会过程的自动化、定量和可扩展系统
基本信息
- 批准号:10019734
- 负责人:
- 金额:$ 48.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-06 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsApplications GrantsAreaArtificial IntelligenceAutomationBehaviorBehavioral SciencesBiometryCharacteristicsChildChildhoodClinicClinicalClinical SciencesClinical TrialsClinical assessmentsCognitiveCollaborationsComputer Vision SystemsComputer softwareComputersDSM-VDataDevelopmentDiagnosisDiagnosticDiseaseEvaluationEvidence based practiceFaceFacial ExpressionFactor AnalysisFeedbackFragile X SyndromeGesturesGoalsGoldGrantGuidelinesHealthcareHomeHumanImpairmentIndividualIntervention TrialLanguageLengthMachine LearningMeasurementMeasuresMedical DeviceMedical Device DesignsMethodsModelingMonitorMovementNatureNeurodevelopmental DisorderNonverbal CommunicationOutcomeOutcome MeasureOutputPatientsPhasePopulationPreparationProblem behaviorProcessPropertyPsychometricsPublic HealthRegulationReportingResearchSamplingSchool-Age PopulationScientistSmall Business Technology Transfer ResearchSocial BehaviorSocial ProcessesSpeechStandardizationSystemTechnologyTestingTherapeuticTrainingValidationValidity and Reliabilityanalogassociated symptomautism spectrum disorderautistic childrenbehavior observationbehavioral healthclinical practicecommercializationcommunication behaviordigital healthdigital treatmentdisabilitydissemination trialearly childhoodexperimental studyfunctional disabilityfunctional outcomesgazeimprovedindividuals with autism spectrum disordermachine learning algorithmmedical specialtiesmotor controlmulti-component interventionneuropsychiatrynew technologynovelpersonalized interventionprogramsrepetitive behaviorresearch clinical testingscreeningshowing emotionsocialsocial communicationsocial deficitssocial reciprocity
项目摘要
Argus Cognitive STTR Grant Application
Abstract
Standardized behavioral observation methods are integral to developmental, educational, and behavioral
science research. However, existing observational strategies are too laborious to use in large-scale, intervention
and dissemination trials needed in autism spectrum disorder (ASD). In addition, current observational
strategies do not yield sufficiently quantitative, comparable and granular assessment that could drive the
comparison of therapies in clinical trials or the optimization and personalization of intervention. We are
developing a minimally intrusive medical device technology (“ARGUS-MDS”) to simultaneously
monitor multiple key social and problem behaviors in individuals with ASD and related
neurodevelopmental disorders (NDDs). Our team represents an essential collaboration between
computer and clinical scientists with expertise in artificial intelligence (AI), NDDs, diagnostics, multi-modal
interventions, and psychometrics. We seek support in the form of a Fast Track STTR grant to validate the
psychometric properties of ARGUS-MDS and its ability to provide data on change in target behaviors in early
childhood and school-aged children. This would then support the development of a scalable, digital treatment
progress indicator for behaviors reflecting social, repetitive behavior, and associated symptom profiles in ASD.
In Phase I, video and audio data will be collected during gold-standard diagnostic evaluations individuals with
ASD (n=15). Aim 1.1 will establish quality and clinical validity of ARGUS-MDS algorithms for key social
communication behaviors, while Aim 1.2 will evaluate test-retest reliability of biometric output. Phase I will
show that ARGUS-MDS meets quality metrics for biometric output, validates the clinician-
technician feedback system, and establishes intraclass correlation coefficients for automated
social communication (AutoSC) output. In Phase II our focus shifts to establishing psychometric
properties of derived scores for AutoSC analysis, evaluating convergence with established clinical and
functional measures, and preparing for regulatory filing in Phase III. Aim 2.1. will develop scores from
biometric data through exploratory and confirmatory factor analyses of social communication behaviors. Aim
2.2 evaluates correspondence of AutoSC scores to scores on standardized clinical assessments. Aim 2.3
develops a comprehensive Validation Strategy and executes Analytical Validation, per medical device design
control regulation and FDA guidance. Phase II will develop scores from AutoSC output, evaluate
measurement characteristics of AutoSC scores, reliability & validity of Autos SC scores, and
executes all Analytical Validations per the strategy document and FDA guidance. Phase I and II
milestones will set us up for commercialization in Phase III, including filing for regulatory approval and
product launch. Successful completion of this project will provide a novel, scalable medical device technology
to support objective, automated clinical evaluations of social impairments in ASD and other NDDs.
阿格斯认知 STTR 拨款申请
抽象的
标准化的行为观察方法是发展、教育和行为不可或缺的一部分
然而,现有的观察策略太费力,无法用于大规模干预。
此外,目前的观察性研究还需要进行自闭症谱系障碍(ASD)的传播试验。
战略无法产生足够的定量、可比和细粒度的评估,无法推动
我们正在临床试验中比较疗法或干预的优化和个性化。
开发微创医疗设备技术(“ARGUS-MDS”)以同时
监测患有自闭症谱系障碍(ASD)及相关疾病的个体的多种关键社会行为和问题行为
我们的团队代表了神经发育障碍 (NDD) 之间的重要合作。
具有人工智能 (AI)、NDD、诊断、多模式专业知识的计算机和临床科学家
我们寻求快速通道 STTR 拨款的支持来验证
ARGUS-MDS 的心理测量特性及其提供早期目标行为变化数据的能力
这将支持可扩展的数字治疗的开发。
反映 ASD 社交、重复行为和相关症状特征的行为进展指标。
在第一阶段,将在黄金标准诊断评估期间收集视频和音频数据
ASD (n=15) 目标 1.1 将确定 ARGUS-MDS 算法对于关键社交的质量和临床有效性。
通信行为,而目标 1.2 将评估第一阶段生物识别输出的重测可靠性。
表明 ARGUS-MDS 满足生物识别输出的质量指标,验证了临床医生
技术人员反馈系统,并建立自动化的组内相关系数
在第二阶段,我们的重点转向建立心理测量。
用于 AutoSC 分析的派生评分的特性,评估与已建立的临床和治疗的收敛性
目标 2.1 的功能措施和监管备案准备工作。
通过对社会沟通行为进行探索性和验证性因素分析来获取生物识别数据。
2.2 评估 AutoSC 分数与标准化临床评估分数的对应关系。
根据医疗设备设计制定全面的验证策略并执行分析验证
第二阶段将根据 AutoSC 输出进行评分,并进行评估。
AutoSC 分数的测量特征、Autos SC 分数的信度和效度,以及
根据战略文件和 FDA 第一阶段和第二阶段指南执行所有分析验证。
里程碑将为我们在第三阶段的商业化奠定基础,包括提交监管部门批准和
该项目的成功完成将提供一种新颖的、可扩展的医疗设备技术。
支持对 ASD 和其他 NDD 中的社交障碍进行客观、自动化的临床评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Attila Meretei其他文献
Attila Meretei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Attila Meretei', 18)}}的其他基金
ARGUS-MDS: automated, quantitative and scalable system for social processes in behavioral health
ARGUS-MDS:行为健康社会过程的自动化、定量和可扩展系统
- 批准号:
9906771 - 财政年份:2019
- 资助金额:
$ 48.51万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
- 批准号:
10589666 - 财政年份:2023
- 资助金额:
$ 48.51万 - 项目类别:
Design and Pilot Test of A Prediabetes Digital Patient Activation Tool
糖尿病前期数字患者激活工具的设计和试点测试
- 批准号:
10648646 - 财政年份:2023
- 资助金额:
$ 48.51万 - 项目类别:
Mechanisms of Rotator Cuff Injury During Manual Wheelchair Propulsion
手动轮椅推进过程中肩袖损伤的机制
- 批准号:
10572578 - 财政年份:2023
- 资助金额:
$ 48.51万 - 项目类别:
Core C-Research Computing, Bioinformatics, and Biostatistics
核心 C 研究计算、生物信息学和生物统计学
- 批准号:
10553867 - 财政年份:2023
- 资助金额:
$ 48.51万 - 项目类别:
CranioRate: An imaging-based, deep-phenotyping analysis toolset, repository, and online clinician interface for craniosynostosis
CranioRate:基于成像的深度表型分析工具集、存储库和在线临床医生界面,用于颅缝早闭
- 批准号:
10568654 - 财政年份:2023
- 资助金额:
$ 48.51万 - 项目类别: