Noninvasive Repositioning of Kidney Stone Fragments with Acoustic Forceps
用声学钳无创重新定位肾结石碎片
基本信息
- 批准号:10589666
- 负责人:
- 金额:$ 19.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-11 至 2027-11-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcousticsAddressAffectAlgorithmsAmericanApplications GrantsAwardBackBladderClinical TrialsCollaborationsComplexControl GroupsCutaneousDataDepositionDevicesEducational workshopElementsEmergency department visitEventFamily suidaeFeedbackForcepFrequenciesFundingFutureGeometryGlassGoalsGrowthHeterogeneityHistologicHospitalizationHumanImageImplantIn VitroInjuryInterventionInvestigationKidneyKidney CalculiKnowledgeLaboratoriesLengthLithotripsyMeasurementMeasuresMechanicsMentorsMethodsModelingMotionOperative Surgical ProceduresPatientsPelvisPhasePhysicsPhysiologic pulsePositioning AttributeProtocols documentationRadiationRecurrenceRenal pelvisResearchResearch PersonnelResearch ProposalsResidual stateRotationSafetyShapesShockSignal TransductionSurfaceSymptomsSystemTechniquesTechnologyTestingTimeTissuesTransducersTranslational ResearchUltrasonic waveUltrasonicsUreterUreteroscopyUrinary tractUrineUrologic DiseasesVisualizationarmcareercareer developmentclinical implementationcommon treatmentcostefficacy evaluationimprovedin vivoindexingindustry partnernovel strategiesobject shapeparticleporcine modelpredictive modelingpressurerandomized, controlled studyreduce symptomsresponsible research conductsuccesssymposiumtechnology developmenttissue injurytissue phantomtreatment armtwo-dimensionalultrasound
项目摘要
Project Summary/Abstract
Kidney stones are prevalent and one of the costliest urologic diseases. The available treatment options
such as ureteroscopy or shockwave wave lithotripsy break the stone into small fragments that can lead to future
growth and recurrence of symptoms. This proposal investigates the underlying mechanisms to use acoustic
radiation force produced by an ultrasound multi-element array that can trap a stone, steer it out of the kidney
collecting space, and deposit it in the renal pelvis or UPJ to facilitate its natural clearance. The project seeks to
answer the fundamental scientific hurdles to target and maneuver the stone toward passage.
Aim 1 develops the analytical framework to optimize pulsing mechanisms to trap and manipulate natural
stones. A proposed semi-analytical approach approximates the scattering with spherical functions to calculate
the forces on natural stones. Predictions will be combined with the investigation of pulsing parameters to optimize
trap robustness and achieve stable trapping of natural stones. Pulsing parameters such as pulse length,
repetition rate, frequency, and phase excitation that control beam shape and uniformity will be adjusted to
eliminate instabilities from rotation and asymmetric forces to achieve stable trapping of natural stones. The aim
success is measured by performing manipulation maneuver natural stones along predetermined paths.
In Aim 2, the stone acts as a target that can reflect and scatter ultrasound waves which are received back
by the multi-element array. Correction algorithms use the received signal to calculate the element excitations
necessary to correct for beam aberrations from the tissue heterogeneity. Hydrophone measurements will
compare the beams before and after corrections with the unaberrated beam. Finally, manipulation of stones in
kidney phantoms and ex vivo are performed to mimic in vivo conditions.
In Aim 3, the safety and efficacy of acoustic forceps manipulation will be evaluated. First, different
acoustic intensity exposures will be investigated in ex vivo porcine kidneys for thermal and mechanical injury.
Afterward, natural stones of various sizes will be implemented in the kidney collecting space of live pigs. The
stone will be targeted, trapped, and steered from the kidney collecting space toward the kidney exit using the
acoustic forceps. The treated group will be evaluated against an untreated control group to evaluate efficacy.
Tissue injury mechanisms will be assessed through histological analysis.
In addition to my research, I will also pursue other activities guided by my mentors toward my career goal
of becoming an independent investigator. These activities include interacting with researchers, industry partners,
and clinicians through seminars and conferences; and participating in workshops on the responsible conduct of
research, and grant proposals and management so that I will be able to pursue independent R-level funding
toward the end of the K25 award. The Applied Physics Laboratory offers the facilities and inter-departmental
collaboration necessary for successful career development in translational research.
项目概要/摘要
肾结石很普遍,也是最昂贵的泌尿系统疾病之一。可用的治疗方案
例如输尿管镜检查或冲击波碎石术将结石打碎成小碎片,可以通向未来
症状的增长和复发。该提案研究了使用声学的基本机制
超声波多元件阵列产生的辐射力可以捕获结石,将其引导出肾脏
收集空间,并将其沉积在肾盂或UPJ中以利于其自然清除。该项目旨在
回答基本的科学障碍,以瞄准并操纵石头通行。
目标 1 开发分析框架来优化脉冲机制,以捕获和操纵自然
石头。提出的半解析方法用球函数来近似散射来计算
作用在天然石材上的力。预测将与脉冲参数的研究相结合以优化
捕获坚固性并实现对天然石材的稳定捕获。脉冲参数,例如脉冲长度、
控制光束形状和均匀性的重复率、频率和相位激励将被调整为
消除旋转和不对称力带来的不稳定性,以实现天然石材的稳定捕获。目的
成功与否是通过沿着预定路径对天然宝石进行操纵来衡量的。
在目标 2 中,石头充当目标,可以反射和散射接收回来的超声波
由多元素数组。校正算法使用接收到的信号来计算单元激励
有必要纠正组织异质性造成的光束像差。水听器测量将
将校正前后的光束与无畸变光束进行比较。最后,对石头进行处理
肾脏模型和离体模型是为了模拟体内条件而进行的。
在目标 3 中,将评估声学钳操作的安全性和有效性。一、不同
将在离体猪肾脏中研究声强度暴露的热损伤和机械损伤。
随后,将在生猪的肾脏收集空间内植入各种大小的天然结石。这
结石将被瞄准、捕获并使用以下装置从肾脏收集空间引导至肾脏出口
声学钳。将对照未治疗的对照组来评估治疗组以评估功效。
将通过组织学分析评估组织损伤机制。
除了我的研究之外,我还将在导师的指导下开展其他活动以实现我的职业目标
成为一名独立调查员。这些活动包括与研究人员、行业合作伙伴、
和临床医生通过研讨会和会议;并参加关于负责任行为的研讨会
研究、拨款提案和管理,以便我能够寻求独立的 R 级资助
K25 奖即将结束。应用物理实验室提供设施和跨部门
转化研究中成功的职业发展所必需的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohamed A Ghanem其他文献
Mohamed A Ghanem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
多孔声学超材料宏微观结构耦合强化吸声机制与多尺度结构设计技术
- 批准号:52375122
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别:
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
- 批准号:
10761587 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别:
Maps as a service: A systematic approach to the production of tactile and audio/vibrational maps for visually impaired users
地图即服务:为视障用户制作触觉和音频/振动地图的系统方法
- 批准号:
10720207 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别:
The Influence of Virtual Reality Environments on Voice Perception and Production
虚拟现实环境对语音感知和产生的影响
- 批准号:
10666001 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别:
Advancing Photoacoustic Tomography in breast imaging to predict response in breast cancers treated with neoadjuvant therapy
推进乳腺成像中的光声断层扫描以预测新辅助治疗乳腺癌的反应
- 批准号:
10715163 - 财政年份:2023
- 资助金额:
$ 19.27万 - 项目类别: