Ice-free vitrification and nano warming technology for banking of cardiovascular structures.
用于心血管结构银行的无冰玻璃化和纳米加温技术。
基本信息
- 批准号:10026454
- 负责人:
- 金额:$ 83.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-11-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAnimal ModelAnimalsAortaAreaArteriesBathingBiocompatible MaterialsBiologicalBiological AssayBiomechanicsBlood PreservationBlood VesselsBlood VolumeCardiovascular systemCarotid ArteriesCationsCell SurvivalCellsChemistryClinicalControlled EnvironmentConvectionCoronary Artery BypassCryopreservationCryopreserved TissueCrystallizationDetectionDiagnosticDialysis procedureDiffuseDisaccharidesDry IceElectromagneticsEndotheliumEngineeringEvaluationExcisionExposure toExtracellular MatrixFamily suidaeFormulationFractureFreezingFresh TissueFutureGenerationsGlassHeatingHistopathologyHumanHyperplasiaIceIn VitroInflammationLaser Scanning MicroscopyLeadLiquid substanceLogisticsLungMagnetic Resonance ImagingMagnetic nanoparticlesMarket ResearchMeasurementMechanicsMedialMedicineMetalsMethodsMicroscopicModelingNitrogenNorth AmericaOrganOutcomePatientsPeripheralPermeabilityPhasePhysiologicalPropertyProtocols documentationPulmonary artery structureRaman Spectrum AnalysisRegenerative MedicineReproductive MedicineResearchResidual stateRewarmingSample SizeSamplingScanning Electron MicroscopyShippingSmall Business Innovation Research GrantSolidSpecimenStructureSurfaceSystemTechniquesTechnologyTemperatureTestingThickThinnessTimeTissue EngineeringTissue PreservationTissue ViabilityTissuesTransition TemperatureTranslationsTransplantationVascular GraftWorkbaseblood vessel transplantationcellular engineeringclinical applicationclinically relevantcryogenicscrystallinitycytotoxicityexperienceexperimental studyfemoral arteryhuman tissuein vivoinnovationmethod developmentmicrowave electromagnetic radiationnanonanoparticlenanowarmingnonhuman primatenovelnovel strategiespackaging materialphase changephysical statepractical applicationpre-clinicalpreclinical evaluationpreservationpressurepreventradio frequencyresazurinresponsesecond harmonictechnology developmenttransplant modeltrauma carevapor
项目摘要
ABSTRACT
This proposal focuses on translation of ice-free cryopreservation by vitrification employing a novel approach of
volumetric heating by nanowarming using Fe nanoparticles in an alternating electromagnetic ?eld. Vitrification,
sub-zero storage below the glass transition temperature in a “glassy” rather than a crystalline frozen phase, is
a form of cryopreservation that avoids ice formation. Vitri?cation can be achieved by quickly cooling the
material to cryogenic storage temperatures, where ice cannot form. Vitri?cation can be maintained at the end
of the cryogenic protocol by quickly rewarming the tissue to temperatures above the temperatures where ice
nucleation may occur. The magnitude of the rewarming rates necessary to maintain vitri?cation is much higher
than the magnitude of the cooling rates that are required to achieve it in the ?rst place. The most common
approach to achieve the required cooling and rewarming rates is by convection based boundary warming in
which the the specimen's surface is exposed to a temperature controlled environment, such as a fluid bath.
Due to the underlying principles of heat transfer, there is a size limit in the case of surface boundary heating
beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the
underlying principles of solid mechanics, there is also a size limit beyond which thermal expansion in the
specimen can lead to structural damage and fractures. Volumetric heating by nanowarming during the
rewarming phase of the cryogenic protocol can alleviate these size limitations. Vitrification is already an
important enabling approach for reproductive medicine with the potential to permit storage and transport of
cells, tissues and organs for a great variety of biomedical uses. Unfortunately, practical application of
vitrification has been limited to smaller systems such as cells and thin tissues due to diffusive and phase
change limitations that preclude use for blood vessels, larger tissues and organs. To circumvent this problem
we demonstrated that nanowarming effectively rewarms blood vessels in our preliminary research. Our
experiments demonstrated that this innovative rewarming technique rewarmed vitrified femoral and carotid
arteries in volumes ranging from 1 to 50mL with retention of cell viability and physiologic function.
However, warming of thick arteries was suboptimal. We propose using large animal blood vessel, models
for further optimization and evaluation of nanowarmed vessels using a combination of in vitro and in vivo
studies. In Phase 1 in a single specific aim we will optimize ice-free vitrification of thick walled arteries,
aorta and pulmonary, with a go/no go objective of achieving > 90% viability for progression to Phase 2. In
Phase 2 specific aims, we propose using porcine vascular models in a combination of ex vivo and in vivo
studies. The magnetic nanoparticles will be distributed around and within the internal spaces of vessels.
The large vessel lumen space makes them a good choice for optimization of vitrification and
nanowarming. In Aim 1 we will evaluate cryopreserved arteries after real time shipping, comparing methods
and validating the transport conditions that are finally approved based upon absence of tissue cracking. In Aim
2 we will characterize the post-ice-free cryopreservation state of arteries preserved for at least 2 years. In
addition, during this aim we will characterize the chemistry and biomaterial properties of ice-free
cryopreserved blood vessels. Effective vitrification will be evaluated using cryomacroscopy to detect ice
formation and cryoprotectant residuals by Raman spectroscopy. In Aim 3 we will perform short-term
transplant studies (28 days) in two porcine vascular models (femoral and pulmonary artery into the carotid
and pulmonary, respectively) in order to validate our technology for a future Phase IIb SBIR proposal using
clinically relevant preclinical non-human primate models and human tissues.
抽象的
该提案的重点是采用一种新颖的方法通过玻璃化转化无冰冷冻保存
在交变电磁场中使用铁纳米粒子进行纳米加热体积加热,
在“玻璃态”而不是结晶冷冻相中低于玻璃化转变温度的零下存储是
一种避免结冰的冷冻保存形式。
材料达到无法形成冰的低温储存温度。
通过快速将组织重新加热到高于冰的温度的低温协议
可能会发生成核。维持玻璃化所需的复温速率要高得多。
首先,比实现它所需的冷却速率的大小要大。
实现所需冷却和复温速率的方法是通过基于对流的边界升温
样品的表面暴露在温度受控的环境中,例如液浴。
由于传热的基本原理,表面边界加热存在尺寸限制
超过这个值,就无法阻止样品中心的结晶。
固体力学的基本原理,也存在尺寸限制,超过该尺寸限制,
样品在纳米加热过程中可能会导致结构损坏和断裂。
低温方案的复温阶段可以缓解这些尺寸限制。
生殖医学的重要支持方法,有可能允许储存和运输
不幸的是,细胞、组织和器官具有多种生物医学用途。
由于扩散和相的原因,玻璃化仅限于较小的系统,例如细胞和薄组织
改变无法用于血管、较大组织和器官的限制,以避免这个问题。
我们在初步研究中证明,纳米变暖可以有效地使血管重新变暖。
实验表明,这种创新的复温技术可以复温玻璃化的股骨和颈动脉
体积从 1 到 50mL 的动脉,保留细胞活力和生理功能。
然而,粗动脉的变暖并不理想,我们建议使用大型动物血管模型。
结合体外和体内进一步优化和评估纳米加热血管
在第一阶段的单一特定目标中,我们将优化厚壁动脉的无冰玻璃化,
主动脉和肺动脉,进行/不进行的目标是达到 > 90% 的生存率,进入第 2 阶段。
第二阶段的具体目标,我们建议结合离体和体内使用猪血管模型
研究中,磁性纳米粒子将分布在血管内部空间周围和内部。
较大的容器内腔空间使其成为优化玻璃化和
在目标 1 中,我们将评估实时运输后的冷冻动脉,比较方法。
并验证基于不存在组织裂纹而最终批准的运输条件。
2 我们将描述保存至少 2 年的动脉的无冰冷冻保存后状态。
此外,在此目标期间,我们将表征无冰的化学和生物材料特性
将使用冷冻宏观镜检测冰来评估冷冻保存的血管的有效玻璃化。
在目标 3 中,我们将通过拉曼光谱分析形成和冷冻保护剂残留。
两种猪血管模型(股动脉和肺动脉进入颈动脉)的移植研究(28 天)
和肺,分别),以验证我们的技术用于未来的 IIb SBIR 提案,使用
临床相关的临床前非人类灵长类动物模型和人体组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kelvin G.M. Brockbank其他文献
Transplantation of bone marrow fibroblastoid stromal cells in mice via the intravenous route
通过静脉途径移植小鼠骨髓成纤维样基质细胞
- DOI:
10.1111/j.1365-2141.1983.tb02097.x - 发表时间:
1983-06-01 - 期刊:
- 影响因子:6.5
- 作者:
A. H. Piersma;R. Ploemacher;Kelvin G.M. Brockbank - 通讯作者:
Kelvin G.M. Brockbank
Kelvin G.M. Brockbank的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kelvin G.M. Brockbank', 18)}}的其他基金
Ice-free vitrification and nanowarming of meniscal grafts for transplantation
用于移植的半月板移植物的无冰玻璃化和纳米加温
- 批准号:
10819333 - 财政年份:2023
- 资助金额:
$ 83.78万 - 项目类别:
Mechanistic approach to optimization of a kidney preservation solution
优化肾脏保存溶液的机械方法
- 批准号:
10545982 - 财政年份:2022
- 资助金额:
$ 83.78万 - 项目类别:
Extended limb preservation employing an optimization strategy for stabilization.
采用优化稳定策略来延长肢体保护。
- 批准号:
10257524 - 财政年份:2021
- 资助金额:
$ 83.78万 - 项目类别:
Ice-free vitrification and nano warming technology for banking of cardiovascular structures.
用于心血管结构银行的无冰玻璃化和纳米加温技术。
- 批准号:
10379220 - 财政年份:2020
- 资助金额:
$ 83.78万 - 项目类别:
Ice-free cryopreservation of whole pediatric testes for autologous banking and replantation.
整个儿科睾丸的无冰冷冻保存用于自体储存和再植。
- 批准号:
9919065 - 财政年份:2020
- 资助金额:
$ 83.78万 - 项目类别:
Feasibility of expanding ischemia time for hearts destined for transplantation
延长移植心脏缺血时间的可行性
- 批准号:
10082625 - 财政年份:2020
- 资助金额:
$ 83.78万 - 项目类别:
Ice-free vitrification and nano warming technology for banking of cardiovascular structures.
用于心血管结构银行的无冰玻璃化和纳米加温技术。
- 批准号:
10587348 - 财政年份:2020
- 资助金额:
$ 83.78万 - 项目类别:
Ice-free vitrification and nanowarming of large osteochondral grafts for transplantation
用于移植的大型骨软骨移植物的无冰玻璃化和纳米加温
- 批准号:
10017008 - 财政年份:2017
- 资助金额:
$ 83.78万 - 项目类别:
Ice Free Vitrification and nanowarming of large cartilage samples for transplantation
用于移植的大型软骨样本的无冰玻璃化和纳米加温
- 批准号:
9473828 - 财政年份:2017
- 资助金额:
$ 83.78万 - 项目类别:
Ice-free vitrification and nanowarming of large osteochondral grafts for transplantation
用于移植的大型骨软骨移植物的无冰玻璃化和纳米加温
- 批准号:
9918800 - 财政年份:2017
- 资助金额:
$ 83.78万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Advancing Research Operations at an Emergent R1 Minority-Serving Institution
推进新兴 R1 少数族裔服务机构的研究运作
- 批准号:
10734698 - 财政年份:2023
- 资助金额:
$ 83.78万 - 项目类别:
IgG and FcR Characterization in Small Animal Models of RespiratoryDisease
呼吸道疾病小动物模型中的 IgG 和 FcR 表征
- 批准号:
10678229 - 财政年份:2023
- 资助金额:
$ 83.78万 - 项目类别:
Development of a Smart Shunt with ICP-feedback for the Treatment of Hydrocephalus
开发用于治疗脑积水的具有 ICP 反馈的智能分流器
- 批准号:
10699566 - 财政年份:2023
- 资助金额:
$ 83.78万 - 项目类别:
Role of the YAP1-LATS2 negative feedback loop in cervical carcinogenesis
YAP1-LATS2负反馈环路在宫颈癌发生中的作用
- 批准号:
10635529 - 财政年份:2023
- 资助金额:
$ 83.78万 - 项目类别:
MoTrPAC: UC Preclinical Animal Study Site - Supplement
MoTrPAC:UC 临床前动物研究网站 - 补充材料
- 批准号:
10746582 - 财政年份:2023
- 资助金额:
$ 83.78万 - 项目类别: