Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
基本信息
- 批准号:8192918
- 负责人:
- 金额:$ 63.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-17 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAlgorithmsAmerican Cancer SocietyAnatomyArchitectureBiochemicalClinicClinicalCommunitiesComputer AssistedComputer softwareComputer-Assisted DiagnosisCore BiopsyDataData SetDatabasesDecision Support SystemsDetectionDevelopmentDiagnosisDiagnosticDiffusionDiseaseElementsEpigenetic ProcessEvaluationExplosionGene ProteinsGleason Grade for Prostate CancerGoalsHealthHealthcareHistologyHistopathologyHospitalsImageImage AnalysisImageryInformaticsLabelLeadLearningLesionLinkLocationMRI ScansMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMedicalMedical InformaticsMethodologyMethodsModalityMolecularNuclearOutcomePathologicPathologistPathologyPatientsPennsylvaniaPhysiologicalPopulationPremalignantProceduresProstateProstate AdenocarcinomaProstatectomyRadical ProstatectomyRadiology SpecialtyReaderRecommendationRecording of previous eventsResearchResearch InfrastructureResolutionScheduleScientistScreening procedureSensitivity and SpecificitySoftware ToolsSourceSpecimenStreamSystemTechniquesTherapeuticTissuesTrainingUnited StatesUniversitiesValidationWeightWorkanticancer researchbasecancer Biomedical Informatics Gridcancer imagingcomputerizeddiagnostic accuracydisease diagnosisimage registrationimaging modalityimprovedin vivointeroperabilitymalignant breast neoplasmmennovelopen sourceoutcome forecastpre-clinicalradiologistrepositoryspectroscopic imagingtool
项目摘要
DESCRIPTION (provided by applicant): Medical informatics from the macro- to micro-scale is increasingly available for a range of detection/diagnosis/theragnostic applications tailored to each patient's history and current condition. Prostatic adenocarcinoma (CAP) is the second most common malignancy among men with an estimated 220,000 new cases in the USA in 2008. With the advent of multi-parametric high resolution (3 Tesla (T)) prostate MRI, providing anatomic, biochemical, and physiologic information, it has become increasingly important to identify the potential value of this information in pre-operative or pre-therapeutic CAP screening. However, in vivo prostate MRI lacks the resolution and ground truth diagnostic accuracy histopathological examination of biopsy cores provides. A first step toward getting prostate MRI for CAP into the clinic would be validating the information provided from MR at the cellular level. However, validating MRI against histological ground truth currently lacks the means to link the information provided by radiological imaging and pathology seamlessly. This is primarily due to a lack of interoperability between informatics representations and tools. One missing element, for instance, is robust and accurate image registration tools to align the multi-modal volumetric data sets. The overarching goal of this collaborative project between the University of Pennsylvania, Rutgers University, and Siemens Corporate Research is to develop and evaluate multi-modal image analysis and machine learning techniques within a software framework that will enable efficient analysis, correlation, and interpretation of multi-functional, multi-resolution patient data. The availability of these multi-modal, multi- scale analysis tools will enable alignment of radiology and pathological data which in turn will (a) enable building and validation of supervised computerized decision support systems for detection and grading of CAP from radiology and pathology data and (b) building meta-classifiers for CAP by integrating multi- modal, multi-scale disease signatures. Such a set of prostate-specific informatics tools promises clinical benefits including improved patient prognoses, more accurate disease diagnoses, and therapeutic recommendations. More generally, the tools developed as part of this project will also enable radiologic/pathologic studies in other disease entities. The specific goals of this project are 1) to develop cross-platform, open source, grid-enabled annotation, image analysis and image registration tools that will enable cross modality validation of radiology data (multi-functional 3 T prostate MRI) with expert histopathological annotation of prostatectomy specimens and provide independent computer-aided predictions of cancer extent and grade on radiology and histopathology, 2) curate an open source caGRID- connected database of prostate MRI and histopathological specimens that will enable development of quantitative signatures for detection and grading of CAP across multiple scales and imaging modalities. PUBLIC HEALTH RELEVANCE: The goal of this project is to develop a software tool kit (based on the XIP application from Siemens corporation) that will allow scientists to study prostate cancer by combining data from multiple imaging modalities (radiology and pathology) with molecular methodologies (including proteins, genes, epigenetic data). The results of this fused and combined data sets will allow scientists to create a more robust system based view of prostate cancer which allow prediction of diagnosis, follow outcomes of therapeutic treatment and facilitate discovery of new treatment options
描述(由申请人提供):从宏观到微观尺度的医学信息学越来越多地可用于针对每个患者的病史和当前状况量身定制的一系列检测/诊断/治疗诊断应用。前列腺癌 (CAP) 是男性中第二常见的恶性肿瘤,2008 年美国估计有 220,000 例新发病例。随着多参数高分辨率 (3 Tesla (T)) 前列腺 MRI 的出现,提供了解剖、生化和生理信息,确定这些信息在术前或治疗前 CAP 筛查中的潜在价值变得越来越重要。然而,体内前列腺 MRI 缺乏活检核心组织病理学检查所提供的分辨率和真实诊断准确性。将用于 CAP 的前列腺 MRI 纳入临床的第一步是在细胞水平上验证 MR 提供的信息。然而,根据组织学基本事实验证 MRI 目前缺乏将放射成像和病理学提供的信息无缝链接的方法。这主要是由于信息学表示和工具之间缺乏互操作性。例如,一个缺失的元素是强大而准确的图像配准工具,用于对齐多模态体积数据集。宾夕法尼亚大学、罗格斯大学和西门子研究中心之间的这一合作项目的总体目标是在软件框架内开发和评估多模态图像分析和机器学习技术,从而实现多模态图像分析和机器学习技术的高效分析、关联和解释。 -功能性、多分辨率患者数据。这些多模式、多尺度分析工具的可用性将能够协调放射学和病理学数据,这反过来又将(a)能够构建和验证受监督的计算机化决策支持系统,用于根据放射学和病理学数据检测和分级 CAP; (b) 通过整合多模式、多尺度疾病特征来构建 CAP 元分类器。这样一套前列腺特异性信息学工具有望带来临床益处,包括改善患者预后、更准确的疾病诊断和治疗建议。更一般地说,作为该项目的一部分开发的工具还将支持其他疾病实体的放射学/病理学研究。该项目的具体目标是 1) 开发跨平台、开源、支持网格的注释、图像分析和图像配准工具,以实现放射学数据(多功能 3 T 前列腺 MRI)与组织病理学专家的跨模态验证前列腺切除标本的注释,并提供癌症范围和放射学和组织病理学分级的独立计算机辅助预测,2) 策划一个开源的 caGRID 连接的前列腺 MRI 和组织病理学标本数据库,这将使得开发用于跨多种尺度和成像方式检测和分级 CAP 的定量特征。 公共健康相关性:该项目的目标是开发一个软件工具包(基于西门子公司的 XIP 应用程序),使科学家能够通过将多种成像模式(放射学和病理学)的数据与分子方法相结合来研究前列腺癌(包括蛋白质、基因、表观遗传数据)。这些融合和组合的数据集的结果将使科学家能够创建一个更强大的基于前列腺癌系统的视图,从而可以预测诊断、跟踪治疗结果并促进新治疗方案的发现
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL D FELDMAN其他文献
MICHAEL D FELDMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL D FELDMAN', 18)}}的其他基金
Computerized histologic image predictor of cancer outcome
癌症结果的计算机组织学图像预测器
- 批准号:
9305968 - 财政年份:2016
- 资助金额:
$ 63.63万 - 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
8305155 - 财政年份:2009
- 资助金额:
$ 63.63万 - 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
8512667 - 财政年份:2009
- 资助金额:
$ 63.63万 - 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
7566209 - 财政年份:2009
- 资助金额:
$ 63.63万 - 项目类别:
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态高层语义驱动的深度伪造检测算法研究
- 批准号:62306090
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高精度海表反照率遥感算法研究
- 批准号:42376173
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度学习与水平集方法的心脏MR图像精准分割算法研究
- 批准号:62371156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
HistoTools: A suite of digital pathology tools for quality control, annotation and dataset identification
HistoTools:一套用于质量控制、注释和数据集识别的数字病理学工具
- 批准号:
10392854 - 财政年份:2019
- 资助金额:
$ 63.63万 - 项目类别:
HistoTools: A suite of digital pathology tools for quality control, annotation and dataset identification
HistoTools:一套用于质量控制、注释和数据集识别的数字病理学工具
- 批准号:
9897498 - 财政年份:2019
- 资助金额:
$ 63.63万 - 项目类别:
HistoTools: A suite of digital pathology tools for quality control, annotation and dataset identification
HistoTools:一套用于质量控制、注释和数据集识别的数字病理学工具
- 批准号:
10116983 - 财政年份:2019
- 资助金额:
$ 63.63万 - 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
8305155 - 财政年份:2009
- 资助金额:
$ 63.63万 - 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
- 批准号:
8512667 - 财政年份:2009
- 资助金额:
$ 63.63万 - 项目类别: