Computerized histologic image predictor of cancer outcome

癌症结果的计算机组织学图像预测器

基本信息

  • 批准号:
    9305968
  • 负责人:
  • 金额:
    $ 62.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

SUMMARY: There is an increased need for predictive and prognostic assays to distinguish more and less aggressive phenotypes of cancer due to A) dramatic increase in cancer incidence and; B) improvements in early diagnosis. Predictive assays in particular will allow for patients with less aggressive disease to be spared more aggressive treatment. Most prognostic tests in the US and Europe are based on gene expression assays (e.g. Oncotype DX (ODx)). Recent studies have shown extensive genetic heterogeneity among cancer cells between tumors and even within the same tumor, suggesting that approaches for recommending therapy for a patient based on the “average” molecular signal of many cells are overly simplistic. Interestingly, for a number of cancers, tumor grade (morphologic appearance on tissue as assessed qualitatively or semi-quantitatively by a pathologist) has been found to be highly correlated with disease outcome. However pathologic grade tends to suffer from significant inter-observer variability. Digitzation of histological samples, or whole slide imaging, facilitates a quantitative approach towards evaluating disease progression and predicting outcome, while also facilitating the adoption of telepathology. Recently, research groups (including our own) have begun to show that computer extracted measurements of tumor morphology (e.g. capturing nuclear orientation, texture, shape, architecture) from routine H&E stained cancer tissue images can predict disease aggressiveness and treatment outcome. By computationally interrogating the entire tumor landscape and its most invasive elements from a standard H&E slide, these approaches can allow for more accurate capture of tumor heterogeneity, disease risk and hence the most appropriate treatment strategy. The goal of this academic-industrial partnership is to develop and validate a computerized histologic image-based predictor (CHIP) to identify which early-stage, estrogen receptor positive (ER+) breast cancer patients are candidates for hormonal therapy alone and which women are candidates for adjuvant chemotherapy based off analysis of the pathology slides derived from biopsy and surgical specimens. Inspirata Inc., a cancer diagnostics company which has recently licensed a number of histomorphometry based technologies from the Madabhushi group, will bring quality management systems and production software standards to help create a pre-commercial companion diagnostic test of the CHIP assay. Additionally Inspirata Inc. will build a complete regulatory pathway for successful translation of the assay in the US and abroad. Finally, the pre-commercial prototype of the CHIP assay will be independently validated using the same strategy and data cohorts as ODx. Our approach has several advantages over molecular assays such as ODx in that it (1) can interrogate the entire expanse of the pathology image enabling a more accurate capture of tumor heterogeneity and hence disease risk, (2) is non-disruptive of pathology workflow, (3) non-destructive of tissue and would be substantially (4) cheaper (critical in low to middle income countries) and (5) faster.
摘要:对预测和预后分析的需求不断增加,以区分更多和更少的疾病。 癌症的侵袭性表型是由于 A) 癌症发病率急剧增加;B) 改善; 早期诊断尤其可以使患有较轻疾病的患者免受伤害。 美国和欧洲的大多数预后测试都是基于基因表达测定。 (例如 Oncotype DX (ODx))。最近的研究表明癌细胞之间存在广泛的遗传异质性。 肿瘤之间甚至同一肿瘤内,这表明推荐治疗的方法 基于许多细胞的“平均”分子信号对患者的判断过于简单化。 统计上,对于许多癌症,肿瘤等级(评估的组织形态学外观) 由病理学家定性或半定量)已被发现与疾病高度相关 然而,病理分级会受到观察者之间的显着数字化趋势的影响。 组织学样本或全玻片成像有助于采用定量方法评估疾病 进展和预测结果,同时也促进了远程病理学最近的研究的采用。 研究小组(包括我们自己的小组)已经开始表明,计算机提取的肿瘤形态测量值 (例如,从常规 H&E 染色的癌症组织图像中捕获核方向、纹理、形状、结构) 可以通过计算询问整个肿瘤来预测疾病的侵袭性和治疗结果。 通过标准 H&E 幻灯片中的景观及其最具侵入性的元素,这些方法可以允许更多 准确捕捉肿瘤异质性、疾病风险,从而制定最合适的治疗策略。 这种学术-工业合作伙伴关系的目标是开发和验证计算机化组织学 基于图像的预测器 (CHIP) 可识别哪种早期雌激素受体阳性 (ER+) 乳腺癌 患者适合单独接受激素治疗,哪些女性适合接受辅助治疗 化疗基于对活检和手术标本的病理切片的分析。 Inc.,一家癌症诊断公司,最近获得了多项基于组织形态计量学的许可 Madabhushi 集团的技术将带来质量管理系统和生产软件 标准,以帮助创建 CHIP 检测的商业前伴随诊断测试。 Inc.将为该检测在美国和国外的成功转化建立完整的监管途径。 最后,CHIP 测定的预商业原型将使用相同的方法进行独立验证 与 ODx 等分子检测相比,我们的方法具有多个优势。 因为它 (1) 可以询问整个病理图像,从而能够更准确地捕获 肿瘤异质性和疾病风险,(2) 不破坏病理工作流程,(3) 不破坏病理学工作流程 组织,并且将大大 (4) 更便宜(对于中低收入国家至关重要)和 (5) 更快。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(36)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL D FELDMAN其他文献

MICHAEL D FELDMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL D FELDMAN', 18)}}的其他基金

Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
  • 批准号:
    8305155
  • 财政年份:
    2009
  • 资助金额:
    $ 62.5万
  • 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
  • 批准号:
    8512667
  • 财政年份:
    2009
  • 资助金额:
    $ 62.5万
  • 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
  • 批准号:
    7566209
  • 财政年份:
    2009
  • 资助金额:
    $ 62.5万
  • 项目类别:
Software to facilitate multimode, multiscale fused data for Pathology and Radiolo
用于促进病理学和放射学多模式、多尺度融合数据的软件
  • 批准号:
    8192918
  • 财政年份:
    2009
  • 资助金额:
    $ 62.5万
  • 项目类别:
ACC BioRepository
ACC生物样本库
  • 批准号:
    10330978
  • 财政年份:
    1997
  • 资助金额:
    $ 62.5万
  • 项目类别:
ACC BioRepository
ACC生物样本库
  • 批准号:
    10550250
  • 财政年份:
    1997
  • 资助金额:
    $ 62.5万
  • 项目类别:
ACC BioRepository
ACC生物样本库
  • 批准号:
    10088758
  • 财政年份:
    1997
  • 资助金额:
    $ 62.5万
  • 项目类别:

相似国自然基金

食管癌新辅助治疗中靶向化疗耐药改善免疫治疗抵抗的机制发现和功能解析
  • 批准号:
    82320108016
  • 批准年份:
    2023
  • 资助金额:
    210 万元
  • 项目类别:
    国际(地区)合作与交流项目
深度融合多组学特征构建胃癌新辅助化疗智能决策模型
  • 批准号:
    82373432
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于多时序CT影像与病理WSI智能预测局部进展期胃癌新辅助化疗疗效的研究
  • 批准号:
    82371952
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
弹性超声预测免疫调节型三阴性乳腺癌新辅助化疗联合免疫治疗的机制研究
  • 批准号:
    82371978
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
  • 批准号:
    82360345
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Improving response prediction to neoadjuvant therapy in pancreatic cancer
改善胰腺癌新辅助治疗的反应预测
  • 批准号:
    10784272
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
Enhancing cognitive function in breast cancer survivors through community-based aerobic exercise training
通过社区有氧运动训练增强乳腺癌幸存者的认知功能
  • 批准号:
    10691808
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
Development of Magnetic Resonance Fingerprinting (MRF) to Assess Response to Neoadjuvant Chemotherapy in Breast Cancer
开发磁共振指纹图谱 (MRF) 来评估乳腺癌新辅助化疗的反应
  • 批准号:
    10713097
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
  • 批准号:
    10697183
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
Integration of non-invasive deep tissue microwave thermometry in the VectRx hyperthermia device in a transgenic liver tumor pig model
在转基因肝肿瘤猪模型中将非侵入性深部组织微波测温技术集成到 VectRx 热疗装置中
  • 批准号:
    10697183
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了