Electromechanical Imaging of Live Vascular Smooth Muscle Cells
活血管平滑肌细胞的机电成像
基本信息
- 批准号:7777889
- 负责人:
- 金额:$ 18.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-03-01 至 2012-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAtherosclerosisAtomic Force MicroscopyBehaviorBiologicalBiological ModelsBiological ProcessBiosensing TechniquesBlood VesselsCalcifiedCell Culture TechniquesCellsCollagen FibrilComputer softwareCouplingCulture MediaDevelopmentDiagnosisDiagnosticDiagnostic ProcedureElectrolytesElectron BeamElementsEnvironmentFunctional disorderFutureGoalsHeartImageIndividualInjuryInvestigationIon ChannelLengthLifeLiquid substanceMapsMechanicsMedicalMethodologyMethodsMicrofilamentsMicrotubulesModelingMolecularMotorMuscle CellsPatch-Clamp TechniquesPathologic ProcessesPhenotypePhysiologicalPlayProcessPropertyProteinsProtonsReactionResolutionRoleScanning Probe MicroscopySmooth Muscle MyocytesSolutionsStimulusStructureSystemTechniquesTestingTissue EngineeringTissuesVisionaqueousbasebiological systemscell behaviorcell typedesignelectric fieldinstrumentlaminin-5membermolecular shapenanoscalenovel diagnosticsnovel therapeutic interventionoperationpreventpublic health relevanceresponserestenosissubmicronsuccesstoolvoltage
项目摘要
DESCRIPTION (provided by applicant): Coupling between electrical and mechanical phenomena is a universal feature of all biological systems. Yet, not much is known about origins of biological electromechanical phenomena on the cellular and subcellular scale. Understanding the underlying molecular mechanisms may have tremendous impact on general understanding of biological processes and specific biomedical applications. Electromechanical stimulation of cells can become a valuable tool for their characterization and can eventually result in the development of novel therapeutic interventions.
Insufficient information about electromechanical phenomena in biological systems is a result of the lack of characterization techniques capable of providing such information on the nanometer scale and capable of operation in liquid environment. Recently, piezoresponse force microscopy (PFM) has demonstrated potential for imaging structure of connective and calcified tissues with sub-10 nm resolution. Members of this team have also demonstrated high resolution piezoresponse imaging of model systems in aqueous solutions. The ability to map electromechanical properties in aqueous media opens the way to characterization of biological systems in native-like conditions.
Here we propose to expand PFM for characterization and stimulation of live cells in physiological environment. Our long-term vision is to use electromechanical imaging as a diagnostic tool and ultimately, utilize electromechanical stimulation for induction of a desirable change in cell behavior. More specifically, we will focus on electromechanical properties of vascular smooth muscle cells as a model system.
To accomplish the goals of this project, we will use electron-beam induced etching to fabricate shielded probes needed for PFM imaging in electrolyte solutions with physiological concentrations. We will perform PFM imaging of live VSMCs in aqueous media and compare piezoresponce of their synthetic and contractile phenotypes. As a result of this project we expect to develop experimental technique needed for investigation of local electromechanical phenomena in live cells and create a methodology for predicting cell behavior upon electromechanical stimulation.
Public Health Relevance Statement: Electromechanical imaging of live cells can become a unique method to provide information about electrophysiological response of cells and tissues on the nanoscale. It can also be used in the future for diagnostic purposes. Even more broadly, it is envisioned that the use of electromechanical stimulations of live cells can find applications in tissue engineering, medical diagnosis, and biosensing.
描述(由申请人提供):电气和机械现象之间的耦合是所有生物系统的普遍特征。然而,关于细胞和亚细胞尺度上生物机电现象的起源并不了解。了解潜在的分子机制可能会对对生物过程和特定生物医学应用的一般理解产生巨大影响。机电刺激细胞可以成为其表征的有价值工具,并最终可能导致新的治疗干预措施的发展。
关于生物系统中机电现象的信息不足是由于缺乏能够在纳米尺度提供此类信息并且能够在液体环境中运行的表征技术的结果。最近,压电响应力显微镜(PFM)表现出具有以下分辨率低于10 nm的结缔组织和钙化组织的成像结构的潜力。该团队的成员还显示了水溶液中模型系统的高分辨率压电成像。在水性介质中绘制机电特性的能力为在类似天然条件下的生物系统表征开辟了道路。
在这里,我们建议在生理环境中扩展PFM以表征和刺激活细胞。我们的长期视力是将机电成像用作诊断工具,并最终利用机电刺激来诱导细胞行为的理想变化。更具体地说,我们将专注于血管平滑肌细胞作为模型系统的机电特性。
为了实现该项目的目标,我们将使用电子束诱导的蚀刻来制造具有生理浓度的电解质溶液中PFM成像所需的屏蔽探针。我们将对水性介质中实时VSMC进行PFM成像,并比较其合成和收缩表型的压电。由于该项目,我们期望开发用于研究活细胞中局部机电现象所需的实验技术,并创建一种预测机电刺激时细胞行为的方法。
公共卫生相关性陈述:活细胞的机电成像可以成为一种独特的方法,以提供有关纳米级细胞和组织的电生理反应的信息。将来也可以用于诊断目的。更广泛地说,可以预见的是,使用机电刺激活细胞可以在组织工程,医学诊断和生物传感中找到应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexey A Vertegel其他文献
Alexey A Vertegel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexey A Vertegel', 18)}}的其他基金
Protective film-forming disinfectant based on chitosan/water/ethanol tertiary solutions
基于壳聚糖/水/乙醇三元溶液的保护膜消毒剂
- 批准号:
10662022 - 财政年份:2022
- 资助金额:
$ 18.3万 - 项目类别:
Protective film-forming disinfectant based on chitosan/water/ethanol tertiary solutions
基于壳聚糖/水/乙醇三元溶液的保护膜消毒剂
- 批准号:
10258101 - 财政年份:2021
- 资助金额:
$ 18.3万 - 项目类别:
Electromechanical Imaging of Live Vascular Smooth Muscle Cells
活血管平滑肌细胞的机电成像
- 批准号:
8019005 - 财政年份:2009
- 资助金额:
$ 18.3万 - 项目类别:
相似国自然基金
SARS-CoV-2 N蛋白激活SCAP-SREBP2/Notch1信号通路促进动脉粥样硬化进展及其机制研究
- 批准号:82360101
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
下调血管平滑肌细胞DDIT4促进ACC磷酸化改善动脉粥样硬化的作用及机制研究
- 批准号:82304476
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SE-lncRNA RPL26L1-AS1通过上调RPL26L1表达促细胞黏附和动脉粥样硬化的机制研究
- 批准号:82372304
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
平滑肌细胞MIA3激活BDNF参与神经调控动脉粥样硬化的机制研究
- 批准号:82300513
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Galectin-3/β-catenin通过NLRP3炎症小体调控血管平滑肌细胞泛凋亡抑制动脉粥样硬化作用和机制研究
- 批准号:82370469
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
相似海外基金
Translational studies of cellular senescence as a regulator of doxorubicin-mediated arterial dysfunction
细胞衰老作为阿霉素介导的动脉功能障碍调节剂的转化研究
- 批准号:
10616523 - 财政年份:2022
- 资助金额:
$ 18.3万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10683796 - 财政年份:2022
- 资助金额:
$ 18.3万 - 项目类别:
Translational studies of cellular senescence as a regulator of doxorubicin-mediated arterial dysfunction
细胞衰老作为阿霉素介导的动脉功能障碍调节剂的转化研究
- 批准号:
10450529 - 财政年份:2022
- 资助金额:
$ 18.3万 - 项目类别:
Vascular cell sexual dimorphism in complex mechanical microenvironments
复杂机械微环境中的血管细胞性别二态性
- 批准号:
9760337 - 财政年份:2019
- 资助金额:
$ 18.3万 - 项目类别:
Integrins as regulators of vascular contractility in aged resistance arteries
整合素作为老化阻力动脉血管收缩力的调节剂
- 批准号:
9975078 - 财政年份:2019
- 资助金额:
$ 18.3万 - 项目类别: