A Fully Patterned Human Neural Tube Model Using Microfluidics
使用微流体技术的完全图案化的人类神经管模型
基本信息
- 批准号:10732812
- 负责人:
- 金额:$ 52.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAnimal ModelArchitectureBiological AssayBiomedical EngineeringBrainCell Differentiation processCell TherapyCentral Nervous SystemCentral Nervous System DiseasesDataDevelopmentDiagnosisDiseaseDisease modelDorsalEctodermEmbryoEmbryologyEventExhibitsFoundationsGeneticGeometryGoalsHomeobox GenesHumanKnowledgeLifeMeasurementMental disordersMicrofluidicsMidbrain structureModelingMolecularNerve TissueNeural Tube DevelopmentNeural tubeNeurodevelopmental DisorderNeuronal DifferentiationNeuronsOrganoidsPathologyPatternPharmaceutical PreparationsPlayPreventionProcessPropertyProsencephalonResearchRoleSignal TransductionSpecific qualifier valueSpinal CordStem Cell DevelopmentStructureTechniquesTestingTimeTissuesToxic effectTubular formationdifferentiation protocolembryo tissuehigh throughput screeninghindbrainhuman modelhuman pluripotent stem cellhuman stem cellsin vitro Modelin vivoinnovationmorphogensnerve stem cellnervous system developmentnervous system disorderneuralneural patterningneural plateneurodevelopmentneuroregulationnotochordprogenitorpublic health relevancerational designself organizationspatiotemporalstem cell modelstem cell therapystem cellssuccesstool
项目摘要
Project Summary
A Fully Patterned Human Neural Tube Model Using Microfluidics
The development of vertebrate central nervous system (CNS) begins with the formation of neural tube (NT)
and its regional patterning to generate neuronal subtypes along the rostral (R)-caudal (C) and dorsal (D)-
ventral (V) axes. Regional patterning of the human NT is a tightly regulated process, deviation from which can
result in neurodevelopmental disorders and may lead to distinct neurological and psychiatric diseases later in
life. Regional patterning of the human NT remains incompletely understood due to limited access to human
embryonic tissues. Animal models have been instrumental in understanding the development of human CNS
and associated disorders. However, they are limited in revealing some fundamental aspects of development,
genetics, pathology, and disease mechanisms that are unique to humans. Stem cell-based in vitro models of
human nervous system development, including neural organoids and bioengineered NT development models,
are emerging as promising experimental tools. However, none of the current stem cell-based neural
development models is capable of recapitulating neural patterning along two orthogonal axes in a 3D tubular
geometry, the hallmark of NT patterning in vivo. Furthermore, the existing neural development models only
recapitulate certain aspects of the development of either human brain or spinal cord regions but not both.
In our preliminary study, we have successfully leveraged the developmental potential and self-
organizing property of human pluripotent stem cells (hPSCs) in conjunction with microfluidics to develop the
first of its kind, synthetic, fully patterned human NT model. Using this microfluidic platform, exogenous
morphogen gradients along two orthogonal axes can be established to achieve regional patterning of the
microfluidic human NT-like structure along both the R-C and D-V axes, in both brain-like and spinal cord-like
regions. This microfluidic patterned human NT-like structure exhibits many hallmarks of NT development,
including a tubular geometry, a single continuous central lumen enclosing by neuronal progenitor cells,
patterned expression of canonical R-C and D-V regional markers including HOX genes, and the emergence of
neural mesodermal progenitors and the isthmic organizer. Thus, the development of the microfluidic human
NT-like structure closely mimics NT development, offering for the first time an in vivo-like tissue architecture
with consistent spatiotemporal cell differentiation and organization.
The goal of this R01 research is to develop this exciting microfluidic human NT-like model (Aim 1) and
leverage its technical advantages to study the roles of different exogenous morphogen signals in neural
patterning (Aim 2 & 3). Genetic perturbations and lineage tracing assays will be conducted to study human
neural mesodermal progenitor development (Aim 2). In Aim 3 we further aim to achieve D-V patterned human
NT-like structures with either forebrain or spinal cord identities and use these structures to recapitulate
interregional cellular interactions and excitation-to-inhibition interplays during cortical development.
项目概要
使用微流体技术的完全图案化的人类神经管模型
脊椎动物中枢神经系统(CNS)的发育始于神经管(NT)的形成
及其区域模式,沿头侧 (R)-尾侧 (C) 和背侧 (D)-生成神经元亚型
腹 (V) 轴。人类 NT 的区域模式是一个严格调控的过程,偏离该过程可能会
导致神经发育障碍,并可能在以后导致不同的神经和精神疾病
生活。由于人类接触的机会有限,人类 NT 的区域模式仍然不完全清楚。
胚胎组织。动物模型有助于了解人类中枢神经系统的发育
和相关疾病。然而,它们在揭示发展的一些基本方面方面有限,
人类独有的遗传学、病理学和疾病机制。基于干细胞的体外模型
人类神经系统发育,包括神经类器官和生物工程 NT 发育模型,
正在成为有前途的实验工具。然而,目前还没有基于干细胞的神经
开发模型能够沿着 3D 管状结构中的两个正交轴重现神经模式
几何学,NT 体内图案的标志。此外,现有的神经发育模型仅
概括了人类大脑或脊髓区域(但不是两者)发育的某些方面。
在我们的初步研究中,我们已经成功地利用了发展潜力和自我
人类多能干细胞 (hPSC) 的组织特性与微流体技术相结合,开发
第一个合成的、完全模式化的人类 NT 模型。使用该微流体平台,外源性
可以建立沿两个正交轴的形态发生素梯度以实现区域图案化
沿着 R-C 和 D-V 轴的微流体人类 NT 样结构,在脑样和脊髓样中
地区。这种微流体图案化的人类 NT 样结构表现出 NT 发育的许多特征,
包括管状几何形状,由神经元祖细胞包围的单个连续中央腔,
包括 HOX 基因在内的规范 R-C 和 D-V 区域标记的模式化表达,以及
神经中胚层祖细胞和峡组织者。因此,人体微流控技术的发展
NT 样结构密切模仿 NT 发育,首次提供类似体内的组织结构
具有一致的时空细胞分化和组织。
这项 R01 研究的目标是开发这种令人兴奋的微流体人类 NT 样模型(目标 1)和
利用其技术优势,研究不同外源形态发生素信号在神经中的作用
图案化(目标 2 和 3)。将进行遗传扰动和谱系追踪分析来研究人类
神经中胚层祖细胞发育(目标 2)。在目标 3 中,我们进一步致力于实现 D-V 模式的人类
具有前脑或脊髓特性的类似 NT 的结构,并使用这些结构来概括
皮质发育过程中区域间细胞相互作用和兴奋与抑制相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianping Fu其他文献
Jianping Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianping Fu', 18)}}的其他基金
Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
使用微流体中枢神经系统模型模拟 NDE1 在大脑发育失调中的功能
- 批准号:
10666902 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10650713 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10505751 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10372321 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10700977 - 财政年份:2022
- 资助金额:
$ 52.34万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10369029 - 财政年份:2021
- 资助金额:
$ 52.34万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10196376 - 财政年份:2021
- 资助金额:
$ 52.34万 - 项目类别:
Synthetic microfluidic synthesis of spinal cord tissues from human pluripotent stem cells
人类多能干细胞脊髓组织的微流体合成
- 批准号:
9805605 - 财政年份:2019
- 资助金额:
$ 52.34万 - 项目类别:
2020-2022 Biomedical Engineering Society (BMES) Cellular and Molecular (CMBE) Conference
2020-2022年生物医学工程学会(BMES)细胞与分子(CMBE)会议
- 批准号:
10560463 - 财政年份:2019
- 资助金额:
$ 52.34万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
Project 2: Ex Vivo Modeling and Analysis of Gastric Precancerous Lesions
项目2:胃癌前病变的离体建模与分析
- 批准号:
10715763 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
Understanding the mechanistic link between vascular dysfunction and Alzheimers disease-related protein accumulation in the medial temporal lobe
了解血管功能障碍与内侧颞叶阿尔茨海默病相关蛋白积累之间的机制联系
- 批准号:
10736523 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
Elucidating the role of pericytes in angiogenesis in the brain using a tissue-engineered microvessel model
使用组织工程微血管模型阐明周细胞在大脑血管生成中的作用
- 批准号:
10648177 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别:
Development of a sample preparation protocol for 3D kidney ultrastructural analysis and immunolabeling by light microscopy
开发用于 3D 肾脏超微结构分析和光学显微镜免疫标记的样品制备方案
- 批准号:
10760947 - 财政年份:2023
- 资助金额:
$ 52.34万 - 项目类别: