Cortical Control of an Assistive Robotic Arm
辅助机械臂的皮质控制
基本信息
- 批准号:7942066
- 负责人:
- 金额:$ 45.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-30 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAmendmentAmyotrophic Lateral SclerosisAreaArtsBehaviorBehavioralBiologicalBrainClinical ResearchClinical TrialsCollaborationsCommunicationComputersDevelopmentDevicesDimensionsEngineeringEventFaceFreedomGerman populationGoalsGrantHandHumanHuman ResourcesImplantIntentionJointsLeadLearningLegLifeLimb structureLinkMethodsMicroelectrodesMonitorMotorMotor CortexMovementMusNervous System PhysiologyNeuronsParalysedParticipantPerformancePersonsPhasePopulationPreventionProsthesisQuadriplegiaQuality of lifeRehabilitation OutcomeRehabilitation therapyResearchResearch Ethics CommitteesRobotRoboticsRunningSelf-Help DevicesSignal TransductionSourceSpinal cord injuryStrokeSystemTechnologyTestingTimeTrainingUpper ExtremityVariantWaterWorkarmbasecostdesigndisabilitydrinkingdrinking waterexperienceflexibilitygraspimprovedneuroregulationneurotechnologyoperationpilot trialrelating to nervous systemresearch studysensorsimulationvirtual reality
项目摘要
DESCRIPTION (provided by applicant): This application addresses broad Challenge Area (01) Behavior, Behavioral Change, and Prevention and specific Challenge Topics: Enabling Technologies 06-HD-101* Improved interfaces for prostheses to improve rehabilitation outcomes; 06-NS-107 Sensors to monitor neurologic function and 06-NS-104 Developing and validating assistive neurotechnologies. The overall goal of this RC1 is to demonstrate the ability for humans with tetraplegia to drink a cup of water using a neurally controlled robot arm. The aims directly related to three challenge areas related to rehabilitation, sensor development, and enabling those with disabilities: 06-HD101, NS 104 and 107. This project capitalizes on an exceptional opportunity for persons with tetraplegia involved in pilot clinical trial of a neural interface system, 'BrainGate', to participate in research to develop new means to restore independence and control. Specifically, the research will establish the ability for BrainGate trial participants to use neural signals from their motor cortex to perform useful reach and grasp actions with a robotic arm. This enabling neurotechnology research is made possible by state of the art robots, designed and tested for safe human interactions, capable of human-like reach and grasp movements. The robots will be provided by the robotics group of the German Aerospace Agency DLR, who have developed and tested this robot. This unique opportunity is also made possible by an experienced clinical, research and engineering academic team who are running a new IDE BrainGate2 clinical trial. The work will extend already demonstrated abilities for persons with longstanding severe paralysis to perform 'point and click' computer mouse actions and control simple robots using BrainGate as part of an earlier FDA and IRB approved IDE pilot trial. The first aim is to determine the number of dimensions that can be independently controlled by neural signals and the means to learn to control these dimensions, using simulations of robot arm function and with the physical robot at a distance. The research will establish optimal decoding and training methods for humans to achieve the highest degree of freedom control. The second aim will advance algorithms to improve reliability and stability of performance over time. The third aim is to create the communication link to the LWRIII robot arm. For the fourth aim, physical system use will be evaluated using optimal training and decoding approaches. The ability for a person with tetraplegia to reach out and grasp a cup of water and drink, using the robot under neural control will be demonstrated. This research will advance assistive technologies that would permit substantially greater independence and control for persons with severe movement disabilities. This Challenge Grant aims to develop assistive technology that will allow persons with severe paralysis to be able to reach and grasp objects using their own brain signals. The experiments will test the ability for persons unable to move their arms or legs, resulting from spinal cord injury, stroke, or Lou Gehrig's disease, to control a robotic arm and hand that can safely interact with people. We will demonstrate the ability for a person with paralysis who is part of an ongoing pilot human clinical trial on neural interfaces to pick up and drink a cup of water using only their own brain signals. This technology could lead to a set of new devices that markedly enhance quality of life and independence of people with severe disabilities.
描述(由申请人提供):该应用程序解决了广泛的挑战领域(01)行为、行为改变和预防以及具体的挑战主题:启用技术06-HD-101*改进假肢界面以改善康复结果; 06-NS-107 监测神经功能的传感器和 06-NS-104 开发和验证辅助神经技术。该 RC1 的总体目标是展示四肢瘫痪的人使用神经控制的机器人手臂喝一杯水的能力。这些目标直接涉及与康复、传感器开发和为残疾人提供帮助相关的三个挑战领域:06-HD101、NS 104 和 107。该项目利用了四肢瘫痪患者参与神经接口试点临床试验的特殊机会系统“BrainGate”,参与研究以开发恢复独立性和控制力的新方法。具体来说,该研究将让 BrainGate 试验参与者能够利用来自运动皮层的神经信号,通过机械臂执行有用的伸展和抓握动作。这种神经技术研究是通过最先进的机器人实现的,这些机器人是为安全的人类互动而设计和测试的,能够像人类一样伸手和抓握动作。这些机器人将由德国航天局 DLR 的机器人小组提供,该小组开发并测试了该机器人。这一独特的机会也得益于经验丰富的临床、研究和工程学术团队,他们正在运行新的 IDE BrainGate2 临床试验。作为早期 FDA 和 IRB 批准的 IDE 试点试验的一部分,这项工作将扩展长期严重瘫痪患者执行“点击”计算机鼠标操作和使用 BrainGate 控制简单机器人的能力。第一个目标是通过模拟机器人手臂功能并与远处的物理机器人一起确定可以由神经信号独立控制的维度数量以及学习控制这些维度的方法。该研究将为人类建立最优的解码和训练方法,以实现最高自由度的控制。第二个目标是改进算法,以随着时间的推移提高性能的可靠性和稳定性。第三个目标是建立与 LWRIII 机器人手臂的通信链路。对于第四个目标,将使用最佳训练和解码方法来评估物理系统的使用。将展示使用神经控制下的机器人,四肢瘫痪的人伸出手抓住一杯水并喝水的能力。这项研究将推进辅助技术的发展,使患有严重运动障碍的人能够获得更大的独立性和控制力。这项挑战拨款旨在开发辅助技术,使严重瘫痪的人能够利用自己的大脑信号够到并抓住物体。这些实验将测试因脊髓损伤、中风或卢伽雷氏病而无法移动手臂或腿的人控制机器人手臂和手与人安全互动的能力。我们将展示一名瘫痪患者仅使用自己的大脑信号拿起并喝一杯水的能力,该患者正在参与一项正在进行的神经接口人体临床试验。这项技术可能会催生出一系列新设备,显着提高严重残疾人的生活质量和独立性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN P DONOGHUE其他文献
JOHN P DONOGHUE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN P DONOGHUE', 18)}}的其他基金
Implantable Microsystems for Human Neuroprosthesis
用于人体神经假体的植入式微系统
- 批准号:
7849598 - 财政年份:2007
- 资助金额:
$ 45.18万 - 项目类别:
Implantable Microsystems for Human Neuroprosthesis
用于人体神经假体的植入式微系统
- 批准号:
7428870 - 财政年份:2007
- 资助金额:
$ 45.18万 - 项目类别:
Implantable Microsystems for Human Neuroprosthesis
用于人体神经假体的植入式微系统
- 批准号:
8116598 - 财政年份:2007
- 资助金额:
$ 45.18万 - 项目类别:
Implantable Microsystems for Human Neuroprosthesis
用于人体神经假体的植入式微系统
- 批准号:
7640588 - 财政年份:2007
- 资助金额:
$ 45.18万 - 项目类别:
Implantable Microsystems for Human Neuroprosthesis
用于人体神经假体的植入式微系统
- 批准号:
7236484 - 财政年份:2007
- 资助金额:
$ 45.18万 - 项目类别:
THE DYNAMIC BRAIN: MOLECULES MATHEMATICS AND THE MIND
动态大脑:分子数学和思维
- 批准号:
6189121 - 财政年份:2000
- 资助金额:
$ 45.18万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Development of recommendations and policies for genetic variant reclassification
制定遗传变异重新分类的建议和政策
- 批准号:
9791351 - 财政年份:2018
- 资助金额:
$ 45.18万 - 项目类别:
Detection of microsatellite instability biomarkers for therapeutic clinical trial eligibility
检测治疗性临床试验资格的微卫星不稳定性生物标志物
- 批准号:
9313523 - 财政年份:2017
- 资助金额:
$ 45.18万 - 项目类别:
The Electronic Medical Records and Genomics (eMERGE) Network, Phase III
电子病历和基因组学 (eMERGE) 网络,第三阶段
- 批准号:
9564312 - 财政年份:2015
- 资助金额:
$ 45.18万 - 项目类别:
The Electronic Medical Records and Genomics (eMERGE) Network, Phase III
电子病历和基因组学 (eMERGE) 网络,第三阶段
- 批准号:
9551116 - 财政年份:2015
- 资助金额:
$ 45.18万 - 项目类别:
Highly Multiplexed FISH for In Situ Genomics
用于原位基因组学的高度多重 FISH
- 批准号:
9065528 - 财政年份:2015
- 资助金额:
$ 45.18万 - 项目类别: