Molecular insight of erythrocyte hypoxic metabolic reprogramming in chronic kidney disease
慢性肾病红细胞缺氧代谢重编程的分子洞察
基本信息
- 批准号:9368074
- 负责人:
- 金额:$ 39.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-06-30
- 项目状态:已结题
- 来源:
- 关键词:AMP-activated protein kinase kinaseAblationAddressAdenosineAdenosine A2B ReceptorAffinityAltitudeAngiotensin IIAngiotensinsBindingBody RegionsChronicChronic Kidney FailureCoupledDangerousnessDiseaseDisease ProgressionDisease modelEnd stage renal failureErythrocytesExperimental ModelsFDA approvedFibrosisGeneticGenetic studyGlucoseGoalsHemoglobinHumanHypoxiaIndividualInflammationInfusion proceduresInjuryInnovative TherapyIsotope LabelingKidneyKidney DiseasesKnock-outKnowledgeMediatingMedicalMetabolicModelingMolecularMorbidity - disease rateMusOrgan TransplantationOxygenPathogenesisPathogenicityPathologicPatientsPharmaceutical PreparationsPhysiologicalPlasmaPlayProductionProteomicsPublishingRNARenal TissueRenal dialysisResearchRoleSPHK1 enzymeSeverity of illnessSignal PathwaySignal TransductionTechniquesTestingTherapeuticTherapeutic EffectTissuesTranslatingUnited StatesUrethral ObstructionVasoconstrictor AgentsWorkbasecell typedeep sequencingeffective therapyepithelial to mesenchymal transitionfollow-uphypoxia inducible factor 1innovationinsightmetabolomicsmortalitymultidisciplinarynovelnovel strategiesnovel therapeuticspreclinical studypreventprotein activationrenal hypoxiarespiratoryscreeningsensorsphingosine 1-phosphatesphingosine kinasetherapeutic developmenttherapeutic evaluationtherapy designtool
项目摘要
Although hypoxia drives chronic kidney disease (CKD) and promotes end stage renal disease, the mechanisms
underlying the pathogenesis of renal hypoxia and disease progression are poorly understood. Thus, the goal of
proposed research is to identify distinct signals and networks underlying renal hypoxia and establish novel
approaches to increase kidney oxygenation and prevent disease progression. The erythrocyte is the most
abundant cell type in our body, acting as both a deliverer and sensor of oxygen (O2). However, their role in
increasing renal oxygenation to slow disease progression in CKD remain unknown. The proposed research
builds on our unbiased high throughput metabolomics screening and mouse genetic studies showing that plasma
adenosine and erythrocyte sphingosine 1-phosphate (S1P) are elevated in humans ascending to high altitude
and that these two metabolites work together to induce 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte
specific allosteric modulator that decreases hemoglobin-O2 binding affinity, and thus increases O2 delivery to
counteract hypoxic tissue damage in mice. Significantly, increased erythrocyte 2,3-BPG and the O2 delivery are
also observed in CKD patients and associated with disease severity. Follow-up mouse genetic studies
demonstrated that activation of the erythrocyte A2B adenosine receptor (ADORA2B) induces 2,3-BPG production
and enhances O2 delivery that has a general protective role to counteract renal hypoxia, damage and disease
progression in two independent experimental models of CKD. Mechanistically, we discovered that AMPK, a
cellular master energy sensor, functions downstream of ADORA2B underlying adenosine induced-2,3-BPG
production and O2 delivery. Moreover, we revealed that elevated sphingosine kinase I (SphK1) also functions
downstream of ADORA2B contributing to hypoxia-induced S1P production and that increased intracellular S1P
directly binds Hb and promotes erythrocyte hypoxic metabolic reprogramming to induce 2,3-BPG production and
O2 delivery and thus counteract renal hypoxia. Overall, our recent findings support the intriguing hypotheses
that erythrocyte hypoxic metabolic reprogramming mediated by adenosine-ADORA2B-AMPK and SphK1-S1P
signaling networks has a beneficial role to lower renal hypoxia and slow disease progression by inducing 2,3-
BPG production and O2 delivery. To test these hypotheses, AIM I and II include multiple novel genetic tools
coupled with multidisciplinary unbiased, robust and state of art techniques including proteomic, metabolomics,
RNA deep sequencing and isotopically labelled glucose flux to determine how ADORA2B-AMPK and S1P-
mediated erythrocyte hypoxic metabolic reprogramming protects renal hypoxia and disease progression in CKD.
In AIM III, we will conduct preclinical studies to test the therapeutic effects of multiple FDA approved drugs to
enhance our newly identified erythrocyte signaling pathways in CKD. Overall, the proposed research has
interrelated goals to translate our findings into innovative therapeutics for CKD by providing new molecular
insight into “erythrocyte metabolic hypoxia reprogramming” in CKD and disease progression.
尽管缺氧会导致慢性肾病 (CKD) 并促进终末期肾病,但其机制
肾脏缺氧和疾病进展的发病机制尚不清楚。
拟议的研究旨在识别肾缺氧背后的不同信号和网络,并建立新的
增加肾脏氧合和防止疾病进展的方法中红细胞最多。
我们体内有丰富的细胞类型,它们既充当氧气 (O2) 的传递者又充当传感器。
增加肾氧合以减缓 CKD 疾病进展仍不清楚。
建立在我们公正的高通量代谢组学筛选和小鼠遗传学研究的基础上,表明血浆
登上高海拔地区的人体内腺苷和红细胞鞘氨醇 1-磷酸 (S1P) 会升高
这两种代谢物共同作用诱导 2,3-二磷酸甘油酸 (2,3-BPG),一种红细胞
特异性变构调节剂,可降低血红蛋白-O2 结合亲和力,从而增加 O2 输送至
显着地抵消小鼠缺氧组织损伤,增加红细胞 2,3-BPG 和 O2 输送。
在 CKD 患者中也观察到并与疾病严重程度相关。
证明红细胞 A2B 腺苷受体 (ADORA2B) 的激活可诱导 2,3-BPG 产生
并增强 O2 输送,具有对抗肾脏缺氧、损伤和疾病的一般保护作用
在两个独立的 CKD 实验模型中,我们发现 AMPK 的进展。
细胞主能量传感器,在腺苷诱导的 ADORA2B 下游发挥作用 - 2,3-BPG
此外,我们发现升高的鞘氨醇激酶 I (SphK1) 也发挥作用。
ADORA2B 下游有助于缺氧诱导 S1P 的产生并增加细胞内 S1P
直接结合 Hb 并促进红细胞缺氧代谢重编程,诱导 2,3-BPG 产生
总体而言,我们最近的研究结果支持了有趣的假设。
腺苷-ADORA2B-AMPK和SphK1-S1P介导的红细胞缺氧代谢重编程
信号网络通过诱导 2,3- 减少肾脏缺氧并减缓疾病进展。
为了检验这些假设,AIM I 和 II 包括多种新颖的遗传工具。
加上多学科公正、稳健和最先进的技术,包括蛋白质组学、代谢组学、
RNA 深度测序和同位素标记的葡萄糖通量以确定 ADORA2B-AMPK 和 S1P-
介导的红细胞缺氧代谢重编程可保护 CKD 中的肾缺氧和疾病进展。
在AIM III中,我们将进行临床前研究,测试多种FDA批准药物的治疗效果,以
增强我们新发现的 CKD 中的红细胞信号通路。
通过提供新的分子,将我们的发现转化为 CKD 的创新疗法
深入了解 CKD 和疾病进展中的“红细胞代谢缺氧重编程”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Xia其他文献
Yang Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Xia', 18)}}的其他基金
Erythrocyte metabolomic profiling reveals new insight and approaches to promote oxygen delivery
红细胞代谢组学分析揭示了促进氧输送的新见解和方法
- 批准号:
9240402 - 财政年份:2017
- 资助金额:
$ 39.02万 - 项目类别:
Metabolites, Sickle Cell Disease, and Novel Therapeutics
代谢物、镰状细胞病和新疗法
- 批准号:
8439870 - 财政年份:2013
- 资助金额:
$ 39.02万 - 项目类别:
Adenosine Signaling, Priapism and Sickle Cell Disease
腺苷信号传导、阴茎异常勃起和镰状细胞病
- 批准号:
7636152 - 财政年份:2009
- 资助金额:
$ 39.02万 - 项目类别:
Adenosine Signaling, Priapism and Sickle Cell Disease
腺苷信号传导、阴茎异常勃起和镰状细胞病
- 批准号:
8055524 - 财政年份:2009
- 资助金额:
$ 39.02万 - 项目类别:
Adenosine Signaling, Priapism and Sickle Cell Disease
腺苷信号传导、阴茎异常勃起和镰状细胞病
- 批准号:
7810706 - 财政年份:2009
- 资助金额:
$ 39.02万 - 项目类别:
Adenosine Signaling, Priapism and Sickle Cell Disease
腺苷信号传导、阴茎异常勃起和镰状细胞病
- 批准号:
8242646 - 财政年份:2009
- 资助金额:
$ 39.02万 - 项目类别:
AT1 Receptor Activating Autoantibodies and Preeclampsia
AT1 受体激活自身抗体和先兆子痫
- 批准号:
7174644 - 财政年份:2005
- 资助金额:
$ 39.02万 - 项目类别:
AT1 Receptor Activating Autoantibodies and Preeclampsia
AT1 受体激活自身抗体和先兆子痫
- 批准号:
7010736 - 财政年份:2005
- 资助金额:
$ 39.02万 - 项目类别:
相似国自然基金
低密度中性粒细胞促进早期乳腺癌微波消融治疗后复发转移的作用及机制研究
- 批准号:82303710
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声混合深度神经网络对PIMSRA心肌热消融边界的实时可视化与识别研究
- 批准号:82302204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳米刀消融通过METTL5介导的核糖体18S rRNA m6A修饰募集MDSC促进肝癌复发的作用及机制研究
- 批准号:82373004
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Interplay between AMPK and Hippo Signaling Regulates Ocular Antiviral Response to Zika virus infection
AMPK 和 Hippo 信号传导之间的相互作用调节眼部对寨卡病毒感染的抗病毒反应
- 批准号:
10540701 - 财政年份:2021
- 资助金额:
$ 39.02万 - 项目类别:
Interplay between AMPK and Hippo Signaling Regulates Ocular Antiviral Response to Zika virus infection
AMPK 和 Hippo 信号传导之间的相互作用调节眼部对寨卡病毒感染的抗病毒反应
- 批准号:
10322026 - 财政年份:2021
- 资助金额:
$ 39.02万 - 项目类别:
Elucidate the mechanism of autophagy in supporting Lkb1-deficient lung tumorigenesis and metastasis
阐明自噬支持 Lkb1 缺陷型肺肿瘤发生和转移的机制
- 批准号:
10329966 - 财政年份:2020
- 资助金额:
$ 39.02万 - 项目类别:
Elucidate the mechanism of autophagy in supporting Lkb1-deficient lung tumorigenesis and metastasis
阐明自噬支持 Lkb1 缺陷型肺肿瘤发生和转移的机制
- 批准号:
10545748 - 财政年份:2020
- 资助金额:
$ 39.02万 - 项目类别:
Elucidate the mechanism of autophagy in supporting Lkb1-deficient lung tumorigenesis and metastasis
阐明自噬支持 Lkb1 缺陷型肺肿瘤发生和转移的机制
- 批准号:
10063978 - 财政年份:2020
- 资助金额:
$ 39.02万 - 项目类别: