Novel Assessments of the Health Impacts of Tropical Cyclones
热带气旋对健康影响的新评估
基本信息
- 批准号:10813296
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAlgorithmsAreaAwardBayesian AnalysisBayesian ForecastBayesian ModelingBig DataCase StudyCessation of lifeCharacteristicsChronicCollaborationsCommunicable DiseasesCommunitiesComputer Vision SystemsCountyDataData ScienceData SourcesDeath RateDemographic FactorsDisastersDiseaseEconomic FactorsEnvironmentEnvironmental EpidemiologyEnvironmental HazardsEnvironmental HealthEpidemiologistEpidemiologyExposure toFailureGoalsGrowthHazard ModelsHealthHospitalizationHousingHumanHurricaneImageImageryInequityInfrastructureInjuryInstitutionKnowledgeMachine LearningMeasuresMedicareMedicare/MedicaidMental HealthMentorshipMethodologyMissionModelingMoldsNamesNational Institute of Environmental Health SciencesNeighborhoodsOutcomePhasePoliciesPublic HealthReportingResearchRespiratory DiseaseSeasonsSocietiesStrategic PlanningStressTechniquesTrainingUnited StatesUnited States National Center for Health StatisticsVariantcareerclimate disastercohortcommunity-level factorcostdesignenvironmental disparityenvironmental health disparityenvironmental justiceexperiencehealth assessmenthealth differencehealth inequalitieshospitalization ratesimprovedmortalityneglectneural networknovelprogramsskillssocial disparitiessocial epidemiologysocial factorsspatiotemporaltrendvulnerable community
项目摘要
PROJECT SUMMARY/ABSTRACT
In the United States, tropical cyclones, such as hurricanes and tropical storms, have a devastating impact on
society. However, beyond some limited studies, there remains a critical research gap in understanding the full
extent of the impact of tropical cyclones on health. The objective of this K99/R00 application is to fill this research
gap with several novel assessments of the health impacts of tropical cyclones. To be able to fulfil this objective,
this K99/R00 application is interdisciplinary, involving the collaboration of experts in environmental epidemiology,
exposure assessment, Bayesian statistics, machine learning, computer vision, and social epidemiology. The K99
phase is designed to augment the candidate's prior research experience through coursework, mentorship, and
directed readings, with specific training in (1) climate-related disaster epidemiology and exposure assessment;
(2) advanced Bayesian statistics methodology; (3) machine learning and computer vision for public health; and
(4) social epidemiology in a disaster and public health context. The skills gained during this award are critical to
the candidate's long-term goal to become a leading and methodologically strong environmental epidemiologist
who conducts rigorous large-scale research that contributes to society's understanding of tropical cyclones and
other environmental hazards to help inform policies in the United States and worldwide. The proposed project
will draw on rich data sources on hospitalization (Medicare and Medicaid cohorts); death (National Center for
Health Statistics); tropical cyclone exposure; and satellite- and ground-based imagery, all of which span several
recent decades and cover all of the United States exposed to tropical cyclones. Aim 1 (K99 phase) will improve
and harmonize estimation of excess hospitalizations and deaths after each named hurricane by (a) applying
an ensemble of Bayesian models to hospitalization and mortality data to estimate weekly hospitalization and
deaths rates that would have been expected had hurricane exposure not occurred; then (b) comparing the actual
historical hospitalization and death rates to calculate excess hospitalizations and deaths. Aim 2 (R00 phase)
will (a) determine the impact of repeated tropical cyclone exposure on chronic health outcomes by analyzing
the association between tropical cyclone exposure and monthly hospitalizations or deaths by applying Bayesian
spatio-temporal hazard models; then (b) accurately forecast health impacts by using results. Aim 3 (R00 phase)
will characterize how physical neighborhood features explain differences in health impacts of tropical cyclones by
(a) utilizing machine learning and computer vision techniques to identify various physical neighborhood features in
tropical cyclone-exposed areas using satellite and street-level imagery; then (b) converting features into metrics in
health models to investigate if and how health impacts of tropical cyclones vary by those metrics. The proposed
training and research program both closely align with NIEHS's mission and Strategic Plan, and is responsive
to NIEHS's priorities of Data Science and Big Data (Theme I, Goal 7), Environmental Health Disparities and
Environmental Justice (Theme II, Goal 4), and Emerging Environmental Health Issues (Theme II, Goal 5).
项目概要/摘要
在美国,飓风和热带风暴等热带气旋对当地造成了毁灭性影响。
然而,除了一些有限的研究之外,在全面了解社会方面仍然存在着重大的研究差距。
热带气旋对健康影响的程度。K99/R00 应用程序的目的是完成这项研究。
与热带气旋对健康影响的多项新评估存在差距 为了能够实现这一目标,
该 K99/R00 应用程序是跨学科的,涉及环境流行病学专家的合作,
暴露评估、贝叶斯统计、机器学习、计算机视觉和社会流行病学。
阶段旨在通过课程作业、指导和
定向阅读,并接受 (1) 气候相关灾害流行病学和暴露评估方面的专门培训;
(2) 先进的贝叶斯统计方法;(3) 公共卫生领域的机器学习和计算机视觉;以及
(4) 灾害和公共卫生背景下的社会流行病学 在此奖项中获得的技能对于以下方面至关重要。
候选人的长期目标是成为领先且方法论强大的环境流行病学家
他进行了严格的大规模研究,有助于社会了解热带气旋和
其他环境危害,以帮助为美国和世界各地的政策提供信息。
将利用丰富的住院数据来源(医疗保险和医疗补助队列)(国家中心);
热带气旋暴露;以及卫星和地面图像,所有这些都跨越多个
近几十年来,覆盖美国所有地区的热带气旋目标 1(K99 阶段)将会改善。
并通过以下方式统一对每次指定飓风后的超额住院治疗和死亡人数的估计:(a)
住院率和死亡率数据的贝叶斯模型集合,用于估计每周住院率和
如果没有发生飓风,则预期的死亡率;然后 (b) 比较实际情况;
历史住院率和死亡率,用于计算超额住院率和死亡率 目标 2(R00 阶段)。
将 (a) 通过分析确定反复接触热带气旋对慢性健康结果的影响
应用贝叶斯分析热带气旋暴露与每月住院或死亡之间的关联
时空危害模型;然后 (b) 使用目标 3(R00 阶段)准确预测健康影响。
将描述物理邻域特征如何解释热带气旋对健康影响的差异
(a) 利用机器学习和计算机视觉技术来识别各种物理邻域特征
使用卫星和街道图像来确定热带气旋暴露区域,然后 (b) 将特征转换为度量;
健康模型来调查热带气旋对健康的影响是否以及如何因这些指标而变化。
培训和研究计划均与 NIEHS 的使命和战略计划紧密结合,并且响应迅速
NIEHS 的数据科学和大数据优先事项(主题 I,目标 7)、环境健康差异和
环境正义(主题 II,目标 4)和新出现的环境健康问题(主题 II,目标 5)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robbie M Parks其他文献
Robbie M Parks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robbie M Parks', 18)}}的其他基金
Novel Assessments of the Health Impacts of Tropical Cyclones
热带气旋对健康影响的新评估
- 批准号:
10351159 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Novel Assessments of the Health Impacts of Tropical Cyclones
热带气旋对健康影响的新评估
- 批准号:
10557850 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
集装箱港口装卸运输区域基于碳配额碳交易的运营优化模型和算法研究
- 批准号:72271152
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
相似海外基金
Distortion Correction in Functional MRI with Deep Learning
利用深度学习进行功能 MRI 畸变校正
- 批准号:
10647991 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
A mobile health framework for left ventricular end diastolic pressure diagnostics and monitoring.
用于左心室舒张末压诊断和监测的移动健康框架。
- 批准号:
10601929 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Neural Operator Learning to Predict Aneurysmal Growth and Outcomes
神经算子学习预测动脉瘤的生长和结果
- 批准号:
10636358 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
PA TH2Caregiving: Data-Driven Digital Engagement to Assess and Address the Needs of Family Caregivers
PA TH2Caregiving:数据驱动的数字参与,评估和满足家庭护理人员的需求
- 批准号:
10598028 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: