Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems

二元调控系统信号转导的分子机制

基本信息

  • 批准号:
    7931609
  • 负责人:
  • 金额:
    $ 7.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2011-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant: All living cells use signal transduction to detect properties of interest in their environment, create an internal representation of stimuli, and generate an appropriate response to changing conditions. Errors in signal transduction can have serious consequences, such as cell growth without a growth stimulus (i.e. cancer). In both prokaryotes and eukaryotes, information is often encoded as the presence or absence of a phosphoryl group specifically attached to a protein. Understanding the mechanisms and regulation of phosphoryl group transfer among proteins, and the impact of phosphorylation on protein activity, is therefore of broad interest. Because microorganisms constitute the vast majority of life on Earth in terms of both numbers and genetic diversity, microbes are logical subjects in which to seek fundamental biological principles generally applicable to all forms of life. Two-component regulatory systems are widely used for signal transduction by bacteria, archaea, eukaryotic microorganisms, and plants (but not humans). A sensor kinase protein detects stimuli and converts them to phosphoryl groups, which are transferred to a response regulator protein to control responses such as behavior, development, physiology, or virulence. Our long-term goal is to achieve a comprehensive understanding of two-component signal transduction. In this proposal, we will investigate the mechanisms and kinetics by which response regulators switch between phosphorylated (active) and unphosphorylated (inactive) states. In order to synchronize responses with stimuli, the kinetics of signaling biochemistry must match the timescale of the affiliated biological process. Response regulators can self-catalyze phosphoryl group addition and removal. Auxiliary kinases and phosphatases substantially accelerate response regulator autocatalytic reactions to achieve physiologically appropriate signaling speeds, but do not alter the intrinsic reaction mechanisms. Although all response regulators share a conserved structure and catalytic residues, autodephosphorylation rates vary by >40,000x. Aims 1 and 2 focus on identifying factors that control rates of response regulator self dephosphorylation and phosphorylation, and understanding how these elements exert their influence. Our experimental strategy integrates biochemistry, bioinformatics, genetics, and structural biology to alter nonconserved residues in the active sites of various response regulators and determine the functional and structural consequences of doing so. Aims 3 and 4 investigate several specific auxiliary phosphatases (e.g. CheZ, CheX, PhoR) in detail to determine what common mechanistic, regulatory, or structural features may exist among this poorly characterized group of proteins. Antibiotic resistance is a major and increasing threat to human health. This work may impact design of therapeutic agents to attack two-component systems that control virulence or viability of bacterial and fungal pathogens. In addition, the knowledge gained could be used to predict or manipulate the signaling kinetics of two-component systems, or engineer synthetic regulatory circuits with specific timing characteristics.
描述(由申请人提供:所有活细胞都使用信号转导来检测其环境中感兴趣的特性,创建刺激的内部表示,并对变化的条件产生适当的响应。信号转导的错误可能会带来严重的后果,例如没有生长刺激的细胞生长(即癌症)。因此,了解蛋白质之间的机制和调节,以及磷酸化对蛋白质活性的影响是广泛的,因为微生物构成了地球上绝大多数生命的数量,而遗传多样性则是逻辑上的逻辑受试者,以寻求基本生物学原理。古细菌,真核微生物和植物(但不是人类)。传感器激酶蛋白会检测到刺激,并将其转换为响应调节蛋白,以控制行为,生理学或抗态度的综合性,响应调节因素在磷酸化(活跃)和未磷酸化(不活跃的)状态下切换,以使响应与刺激同步,信号传导生物化学的动力学必须与关联的生物学过程相匹配。在生理上适当的信号传导速度,但没有改变固有的反应机制,尽管所有响应调节剂具有保守的结构和催化残基,但自动磷酸化速率均在识别响应速率自我DEPHOSPHORTION和PHOPHOSPRATION的效果上的效果上,均为40,000 X生物信息学,遗传学和结构生物学改变了各种反应调节剂的活跃部位,并确定这样做的功能和结构后果,目的是3和4。对人类健康的威胁增加可能会影响治疗剂的设计,以攻击两个组件的系统,以控制细菌和真菌病原体的毒力或生存能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert B. Bourret其他文献

Robert B. Bourret的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert B. Bourret', 18)}}的其他基金

Identifying the Bordetella PlrSR regulon
鉴定博德特氏菌 PlrSR 调节子
  • 批准号:
    10722876
  • 财政年份:
    2023
  • 资助金额:
    $ 7.1万
  • 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
  • 批准号:
    8464128
  • 财政年份:
    1994
  • 资助金额:
    $ 7.1万
  • 项目类别:
Molecular Mechanisms of Signaling in E. coli Chemotaxis
大肠杆菌趋化性信号转导的分子机制
  • 批准号:
    7151918
  • 财政年份:
    1994
  • 资助金额:
    $ 7.1万
  • 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
  • 批准号:
    7916968
  • 财政年份:
    1994
  • 资助金额:
    $ 7.1万
  • 项目类别:
MOLECULAR MECHANISMS OF SIGNAL TRANDUCTION BY CHEY
Chey 的信号转导分子机制
  • 批准号:
    2701616
  • 财政年份:
    1994
  • 资助金额:
    $ 7.1万
  • 项目类别:
MOLECULAR MECHANISMS OF SIGNALING IN E COLI CHEMOTAXIS
大肠杆菌趋化性信号传导的分子机制
  • 批准号:
    6180358
  • 财政年份:
    1994
  • 资助金额:
    $ 7.1万
  • 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
  • 批准号:
    7685867
  • 财政年份:
    1994
  • 资助金额:
    $ 7.1万
  • 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
  • 批准号:
    8233800
  • 财政年份:
    1994
  • 资助金额:
    $ 7.1万
  • 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
  • 批准号:
    7741749
  • 财政年份:
    1994
  • 资助金额:
    $ 7.1万
  • 项目类别:
Molecular Mechanisms of Signal Transduction by Two-Component Regulatory Systems
二元调控系统信号转导的分子机制
  • 批准号:
    9310656
  • 财政年份:
    1994
  • 资助金额:
    $ 7.1万
  • 项目类别:

相似海外基金

Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 7.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了